Skip to main content

Advertisement

Log in

Ecosystem Response to Climatic Change: The Importance of the Cold Season

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Available at www.senorge.no.

References

  • Aerts, R., and F.S. Chapin. 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67.

    Article  CAS  Google Scholar 

  • Benedict, J.B. 1991. Experiments on lichen growth. 2 Effects of a seasonal snow cover. Arctic and Alpine Research 23: 189–199.

    Article  Google Scholar 

  • Berg, M.P., M. Stoffer, and H.H. van den Heuvel. 2004. Feeding guilds in Collembola based on digestive enzymes. Pedobiologia 48: 589–601.

    Article  Google Scholar 

  • Bjerke, J.W. 2009. Ice encapsulation protects rather than disturbs the freezing lichen. Plant Biology 11: 227–235.

    Article  CAS  Google Scholar 

  • Bjerke, J.W. 2011. Winter climate change: Ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environmental and Experimental Botany 72: 404–408.

    Article  Google Scholar 

  • Bjerke, J.W., and H. Tømmervik. 2008. Observerte skader på nordnorske planter i løpet av vår og sommer 2006: omfang og mulige årsaker. Blyttia 66: 90–96. (In Norwegian).

    Google Scholar 

  • Bjerke, J.W., S. Bokhorst, M. Zielke, T.V. Callaghan, F.W. Bowles, and G.K. Phoenix. 2011. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. Journal of Ecology 99: 1481–1488.

    Article  Google Scholar 

  • Bokhorst, S., A. Huiskes, P. Convey, and R. Aerts. 2007a. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecology 715. doi:10.1186/1472-6785-1187-1115

  • Bokhorst, S., C. Ronfort, A. Huiskes, P. Convey, and R. Aerts. 2007b. Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biology 30: 983–990.

    Article  Google Scholar 

  • Bokhorst, S., A.H.L. Huiskes, P. Convey, P.M.V. Bodegom, and R. Aerts. 2008. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology and Biochemistry 40: 1547–1556.

    Article  CAS  Google Scholar 

  • Bokhorst, S., J.W. Bjerke, H. Tømmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.

    Article  Google Scholar 

  • Bokhorst, S., J.W. Bjerke, M. Davey, K. Taulavouri, E. Taulavuori, K. Laine, T.V. Callaghan, and G.K. Phoenix. 2010. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiologia Plantarum 140: 128–140.

    Article  CAS  Google Scholar 

  • Bokhorst, S., J.W. Bjerke, L. Street, T.V. Callaghan, and G.K. Phoenix. 2011a. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Global Change Biology 17: 2817–2830.

    Article  Google Scholar 

  • Bokhorst, S., A.H.L. Huiskes, P. Convey, B.J. Sinclair, M. Lebouvier, B. van de Vijver, and D.H. Wall. 2011b. Microclimate impacts of passive warming methods in Antarctica: Implications for climate change studies. Polar Biology 34: 1421–1435.

    Article  Google Scholar 

  • Bokhorst, S., G.K. Phoenix, J.W. Bjerke, T.V. Callaghan, F. Huyer-Brugman, and M.P. Berg. 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Global Change Biology 18: 1152–1162.

    Article  Google Scholar 

  • Callaghan, T.V., L.O. Bjorn, Y. Chernov, T. Chapin, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, et al. 2004. Responses to projected changes in climate and UV-B at the species level. AMBIO 33: 418–435.

    Google Scholar 

  • Callaghan, T.V., M. Johansson, R.D. Brown, P.Y. Groisman, N. Labba, V. Radionov, R.S. Bradley, S. Blangy, et al. 2011. Multiple effects of changes in arctic snow cover. AMBIO 40: 32–45.

    Article  Google Scholar 

  • Christensen, J.H., B. Hewitson, A. Busuioc, A. Cheng, X. Gao, I. Held, R. Jones, R.K. Kolli, et al. 2007. Regional climate projections. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 847–940. Cambridge: Cambridge University Press.

  • Colbeck, S.C. 1991. The layered character of snow covers. Reviews of Geophysics 29: 81–96.

    Article  Google Scholar 

  • Cornelissen, J.H.C., S.I. Lang, N.A. Soudzilovskaia, and H.J. During. 2007. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany 99: 987–1001.

    Article  CAS  Google Scholar 

  • Cunningham, C., N.E. Zimmermann, V. Stoeckli, and H. Bugmann. 2006. Growth response of Norway spruce saplings in two forest gaps in the Swiss Alps to artificial browsing, infection with black snow mold, and competition by ground vegetation. Canadian Journal of Forest Research 36: 2782–2793.

    Article  Google Scholar 

  • Dorrepaal, E., R. Aerts, J.H.C. Cornelissen, T.V. Callaghan, and R.S.P. van Logtestijn. 2004. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology 10: 93–104.

    Article  Google Scholar 

  • Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Bjork, A.D. Bjorkman, T.V. Callaghan, L.S. Collier, E.J. Cooper, et al. 2012. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15: 164–175.

    Article  Google Scholar 

  • Filser, J. 2002. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46: 234–245.

    Google Scholar 

  • Gaines, S.D., and M.W. Denny. 1993. The largest, smallest, highest, lowest, longest, and shortest—extremes in ecology. Ecology 74: 1677–1692.

    Article  Google Scholar 

  • Graae, B.J., I.G. Alsos, and R. Ejrnaes. 2008. The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecology 198: 275–284.

    Article  Google Scholar 

  • Hessl, A.E., and W.L. Baker. 1997. Spruce and fir regeneration and climate in the forest-tundra ecotone of Rocky Mountain National Park, Colorado USA. Arctic and Alpine Research 29: 173–183.

    Article  Google Scholar 

  • Hubert, J., M. Zilova, and S. Pekar. 2001. Feeding preferences and gut contents of three panphytophagous oribatid mites Acari: Oribatida. European Journal of Soil Biology 37: 197–208.

    Article  Google Scholar 

  • Inouye, D.W. 2000. The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters 3: 457–463.

    Article  Google Scholar 

  • Johansson, C., V.A. Pohjola, C. Jonasson, and T.V. Callaghan. 2011. Multi-decadal changes in snow characteristics in sub-Arctic Sweden. AMBIO 40: 566–574.

    Article  Google Scholar 

  • Jørgensen, M., L. Østrem, and M. Höglind. 2010. De-hardening in contrasting cultivars of timothy and perennial ryegrass during winter and spring. Grass & Forage Science 65: 38–48.

    Article  Google Scholar 

  • Kappen, L. 2000. Some aspects of the great success of lichens in Antarctica. Antarctic Science 12: 314–324.

    Article  Google Scholar 

  • Kappen, L., M. Sommerkorn, and B. Schroeter. 1995. Carbon acquisition and water relations of lichens in polar regions—potentials and limitations. Lichenologist 27: 531–545.

    Google Scholar 

  • Kumpula, J., P. Parikka, and M. Nieminen. 2000. Occurrence of certain microfungi on reindeer pastures in northern Finland during winter 1996–97. Rangifer 20: 3–8.

    Google Scholar 

  • Maraun, M., S. Migge, M. Schaefer, and S. Scheu. 1998. Selection of microfungal food by six oribatid mite species Oribatida, Acari from two different beech forests. Pedobiologia 42: 232–240.

    Google Scholar 

  • Matsumoto, N. 2009. Snow molds: A group of fungi that prevail under snow. Microbes and Environments 24: 14–20.

    Article  Google Scholar 

  • Olofsson, J., L. Ericson, M. Torp, S. Stark, and R. Baxter. 2011. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change 1: 220–223.

    Article  CAS  Google Scholar 

  • Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  Google Scholar 

  • Pearce, R.S. 2001. Plant freezing and damage. Annals of Botany 87: 417–424.

    Article  CAS  Google Scholar 

  • Phoenix, G.K., and J.A. Lee. 2004. Predicting impacts of Arctic climate change: Past lessons and future challenges. Ecological Research 19: 65–74.

    Article  Google Scholar 

  • Putkonen, J., and G. Roe. 2003. Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophysical Research Letters 30: 1188. doi:1110.1029/2002GL016326.

    Article  Google Scholar 

  • Riseth, J.A., H. Tømmervik, E. Helander-Renvall, N. Labba, C. Johansson, E. Malnes, J.W. Bjerke, C. Jonsson, et al. 2011. Sámi traditional ecological knowledge as a guide to science: Snow, ice and reindeer pasture facing climate change. Polar Record 47: 202–217.

    Article  Google Scholar 

  • Schroeter, B., S.L. Kaplan, F. Schulz, and L.G. Sancho. 2000. Seasonal variation in the carbon balance of lichens in the maritime antarctic: Long-term measurements of photosynthetic activity in Usnea aurantiaco-atra. In Antarctic ecosystems: Models for wider ecological understanding, ed. W. Davidson, C. Howard-Williams, and P. Broady, 258–262. Christchurch: The Caxton Press.

    Google Scholar 

  • Schmidt, S.K., K.L. Wilson, R.K. Monson, and D.A. Lipson. 2009. Exponential growth of snow molds at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q 10 values. Biogeochemistry 95: 13–21.

    Article  Google Scholar 

  • Schmidt, N.M., C. Baittinger, J. Kollmann, and M.C. Forchhammer. 2010. Consistent dendrochronological response of the Dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types. Arctic, Antarctic, and Alpine Research 42: 471–475.

    Article  Google Scholar 

  • Simms, H.R. 1967. On the ecology of Herpotrichia nigra. Mycologia 59: 902–909.

    Article  Google Scholar 

  • Sturm, M., J.P. McFadden, G.E. Liston, F.S. Chapin, C.H. Racinem, and J. Holmgren. 2001. Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. Journal of Climate 14: 336–344.

    Article  Google Scholar 

  • Taub, D.R., and M.T. Lerdau. 2000. Relationship between leaf nitrogen and photosynthetic rate for three NAD-ME and three NADP-ME C-4 grasses. American Journal of Botany 87: 412–417.

    Article  CAS  Google Scholar 

  • Tolvanen, A. 1997. Recovery of the bilberry Vaccinium myrtillus L. from artificial spring and summer frost. Plant Ecology 1301: 35–39.

    Article  Google Scholar 

  • Van Straalen, N.M., and P.C. Rijninks. 1982. The efficiency of Tullgren apparatus with respect to interpreting seasonal changes in age structure of soil arthropod populations. Pedobiologia 24: 197–209.

    Google Scholar 

  • Walker, D.A., W.D. Billings, and J.G. de Molenaar. 2001. Snow-vegetation interactions in tundra environments. In Snow ecology: An interdisciplinary examination of snow-covered ecosystems, ed. H.G. Jones, J.W. Pomeroy, D.A. Walker, and R.W. Hoham, 266–324. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wall, D.H., M.A. Bradford, M.G.S. John, J.A. Trofymow, V. Behan-Pelletier, D.D.E. Bignell, J.M. Dangerfield, W.J. Parton, et al. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology 14: 2661–2677.

    Google Scholar 

  • Wipf, S., and C. Rixen. 2010. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research 29: 95–109.

    Article  Google Scholar 

  • Ye, H.C., D.Q. Yang, and D. Robinson. 2008. Winter rain on snow and its association with air temperature in northern Eurasia. Hydrological Processes 22: 2728–2736.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Terry V. Callaghan for all the excellent ideas and suggestions during the fieldwork and discussions at Abisko that shaped the work presented here, and his support for the project while director of ANS. This research was supported by a Leverhulme Trust (UK) grant to GKP and TVC, by a grant from the Research Council of Norway awarded to JWB (Contract Nos. 171542/V10 and 216434/E10), by ATANS grants (EU Transnational Access Programme) to JWB, GKP and SB and by the Netherlands Polar Programme (NPP-NWO 851.20.016). This article was improved by the constructive comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stef Bokhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokhorst, S., Bjerke, J.W., Tømmervik, H. et al. Ecosystem Response to Climatic Change: The Importance of the Cold Season. AMBIO 41 (Suppl 3), 246–255 (2012). https://doi.org/10.1007/s13280-012-0310-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0310-5

Keywords

Navigation