, Volume 41, Supplement 3, pp 292–302 | Cite as

Linking Fine-Scale Sub-Arctic Vegetation Distribution in Complex Topography with Surface-Air-Temperature Modelled at 50-m Resolution

  • Zhenlin Yang
  • Martin T. Sykes
  • Edward Hanna
  • Terry V. Callaghan


Recent studies have shown that the complexities of the surface features in mountainous terrain require a re-assessment of climate impacts at the local level. We explored the importance of surface-air-temperature based on a recently published 50-m-gridded dataset, versus soil variables for explaining vegetation distribution in Swedish Lapland using generalised linear models (GLMs). The results demonstrated that the current distribution of the birch forest and snowbed community strongly relied on the surface-air-temperature. However, temperature alone is a poor predictor of many plant communities (wetland, meadow). Because of diminishing sample representation with increasing altitude, the snowbed community was under-sampled at higher altitudes. This results in underestimation of the current distribution of the snowbed community around the mountain summits. The analysis suggests that caution is warranted when applying GLMs at the local level.


Generalised linear model Mountains Vegetation distribution Swedish sub-arctic Scale 



This study was conducted as part of the Marie Curie Early Stage Training network—Multiarc-supported by European Union FP7. This study was also partially supported by FORMAS projects “Climate change, impacts and adaptation in the sub-Arctic: a case study from the northern Swedish mountains” (214-2008-188) and “Advanced Simulation of Arctic climate change and impact on Northern regions” (214-2009-389). The authors wish to thank two anonymous reviewers for their comments. The authors are grateful to Eva Kuster, Jonas Åkerman, Christer Jonasson, and Jonathon Seaquist for valuable comments. We would like to thank Paul Coles for his help to redraw the graphs. We would like to thank Abisko Scientific Research Station staff for help and data collection.

Supplementary material

13280_2012_307_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 73 kb)


  1. Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. Paper presented at the 2nd international symposium on information theory, Akademiai Kiado. Budapest, Hungary.Google Scholar
  2. Araújo, M.B., R.J. Whittaker, R.J. Ladle, and M. Erhard. 2005. Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography 14: 529–538. doi: 10.1111/j.1466-822X.2005.00182.x.CrossRefGoogle Scholar
  3. Araújo, M.B., W. Thuiller, and N.G. Yoccoz. 2009. Reopening the climate envelope reveals macroscale associations with climate in European birds. Proceedings of the National academy of Sciences of the United States of America 106: E45–E46.Google Scholar
  4. Ashcroft, M.B., L.A. Chisholm, and K.O. French. 2009. Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology 15: 656–667.CrossRefGoogle Scholar
  5. Barbet-Massin, M., W. Thuiller, and F. Jiguet. 2010. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33: 878–886. doi: 10.1111/j.1600-0587.2010.06181.x.CrossRefGoogle Scholar
  6. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 1–20. doi: 10.1175/2010ei315.1.CrossRefGoogle Scholar
  7. Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.CrossRefGoogle Scholar
  8. Botkin, D.B., H. Saxe, M.B. Araújo, R. Betts, R.H.W. Bradshaw, T. Cedhagen, P. Chesson, et al. 2007. Forecasting the effects of global warming on biodiversity. BioScience 57: 227–236. doi: 10.1641/b570306.CrossRefGoogle Scholar
  9. Braunisch, V., and R. Suchant. 2010. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 33: 826–840. doi: 10.1111/j.1600-0587.2009.05891.x.CrossRefGoogle Scholar
  10. Brooker, R.W., J.M.J. Travis, E.J. Clark, and C. Dytham. 2007. Modelling species’ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology 245: 59–65.CrossRefGoogle Scholar
  11. Callaghan, T.V., and P.S. Karlsson. 1996. Plant ecology in subarctic Swedish Lapland: Summary and conclusions. Ecological Bulletins 45: 220–227.Google Scholar
  12. Chevan, A., and M. Sutherland. 1991. Hierarchical partitioning. The American Statistician 45: 90–96.Google Scholar
  13. Christiansen, H. 2001. Snow-cover depth, distribution and duration data from northeast Greenland obtained by continuous automatic digital photography. Annals of Glaciology 32: 102–108.CrossRefGoogle Scholar
  14. Dankers, R., and S.M. De Jong. 2004. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images. International Journal of Remote Sensing 25: 2933–2949. doi: 10.1080/01431160310001618374.CrossRefGoogle Scholar
  15. Darmody, R.G., C.E. Thorn, P. Schlyter, and J.C. Dixon. 2004. Relationship of vegetation distribution to soil properties in Karkevagge, Swedish Lapland. Arctic, Antarctic, and Alpine Research 36: 21–32.CrossRefGoogle Scholar
  16. Desdevises, Y., P. Legendre, L. Azouzi, and S. Morand. 2003. Quantifying phylogenetically structured environmental variation. Evolution 57: 2647–2652.Google Scholar
  17. Edenius, L., C.P. Vencatasawmy, P. Sandström, and U. Dahlberg. 2003. Combining satellite imagery and ancillary data to map snowbed vegetation important to reindeer Rangifer tarandus. Arctic, Antarctic, and Alpine Research 35: 150–157.CrossRefGoogle Scholar
  18. Fielding, A.H., and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.CrossRefGoogle Scholar
  19. Franklin, J. 2009. Mapping species distributions: Spatial inference and prediction. Cambridge: Cambridge University Press.Google Scholar
  20. Freeman, E. 2007. PresenceAbsence: An R Package for Presence-Absence Model Evaluation, USDA Forest Service.Google Scholar
  21. Grau, O., J.M. Ninot, J.M. Blanco-Moreno, R.S.P. van Logtestijn, J.H.C. Cornelissen, and T.V. Callaghan. 2012. Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos. doi: 10.1111/j.1600-0706.2011.20032.x.
  22. Hanna, E., T. Jónsson, and J.E. Box. 2004. An analysis of Icelandic climate since the nineteenth century. International Journal of Climatology 24: 1193–1210. doi: 10.1002/joc.1051.CrossRefGoogle Scholar
  23. Heikkinen, R.K., M. Luoto, M.B. Araújo, R. Virkkala, W. Thuiller, and M.T. Sykes. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography 30: 751–777.CrossRefGoogle Scholar
  24. Hirzel, A., and A. Guisan. 2002. Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling 157: 331–341.CrossRefGoogle Scholar
  25. Illán, J.G., D. Gutiérrez, and R.J. Wilson. 2010. The contributions of topoclimate and land cover to species distributions and abundance: Fine-resolution tests for a mountain butterfly fauna. Global Ecology and Biogeography 19: 159–173.CrossRefGoogle Scholar
  26. Kadmon, R., F. Oren, and D. Avinoam. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications 13: 853–867.CrossRefGoogle Scholar
  27. Kadmon, R., O. Farber, and A. Danin. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications 14: 401–413.CrossRefGoogle Scholar
  28. Kuhn, I., M. Brandenburg, and S. Klotz. 2004. Why do alien plant species that reproduce in natural habitats occur more frequently? Diversity and Distributions 10: 417–425.CrossRefGoogle Scholar
  29. Lang, S.I., J.H.C. Cornelissen, A. Hölzer, C.J.F. Ter Braak, M. Ahrens, T.V. Callaghan, and R. Aerts. 2009. Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: The importance of temporal, spatial and functional scales. Journal of Ecology 97: 299–310. doi: 10.1111/j.1365-2745.2008.01472.x.CrossRefGoogle Scholar
  30. Liston, G.E., and C.A. Hiemstra. 2010. Representing grass– and shrub–snow–atmosphere interactions in climate system models. Journal of Climate 24: 2061–2079. doi: 10.1175/2010jcli4028.1.CrossRefGoogle Scholar
  31. Luoto, M., and R.K. Heikkinen. 2008. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biology 14: 483–494.CrossRefGoogle Scholar
  32. Mac Nally, R. 2002. Multiple regression and inference in ecology and conservation biology: Further comments on identifying important predictor variables. Biodiversity and Conservation 11: 1397–1401.CrossRefGoogle Scholar
  33. Menke, S.B., D.A. Holway, and R.N. Fisher. 2009. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Global Ecology and Biogeography 18: 50–64.CrossRefGoogle Scholar
  34. Nagelkerke, N.J.D. 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691–692.CrossRefGoogle Scholar
  35. Pearson, R.G., W. Thuiller, M.B. Araújo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, et al. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 33: 1704–1711. doi: 10.1111/j.1365-2699.2006.01460.x.CrossRefGoogle Scholar
  36. Randin, C.F., R. Engler, S. Normand, M. Zappa, N.E. Zimmermann, P.B. Pearman, P. Vittoz, W. Thuiller, et al. 2009. Climate change and plant distribution: Local models predict high-elevation persistence. Global Change Biology 15: 1557–1569.CrossRefGoogle Scholar
  37. Rangel, T.F.L.V.B., J.A.F. Diniz-Filho, and L.M. Bini. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography 15: 321–327. doi: 10.1111/j.1466-822X.2006.00237.x.CrossRefGoogle Scholar
  38. Reddy, K.R., and R.D. DeLaune. 2008. Biogeochemistry of wetlands: Science and applications. Boca Raton: CRC Press.CrossRefGoogle Scholar
  39. Rodhe, L., M. Pyykonen, and M. Krekula. 1999. Jordartskarta: Geological Survey of Sweden.Google Scholar
  40. Thuiller, W., L. Brotons, M.B. Araújo, and S. Lavorel. 2004. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27: 165–172.CrossRefGoogle Scholar
  41. Travis, J.M.J., R.W. Brooker, and E.J. Clark. 2006. The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology 241: 896–903.CrossRefGoogle Scholar
  42. Trivedi, M.R., P.M. Berry, M.D. Morecroft, and T.P. Dawson. 2008. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology 14: 1089–1103.CrossRefGoogle Scholar
  43. Tomas, P. 1998. Fjällvegetation, vektorformat för 30I (Abisko). Metria, Lantmäteriet GSD.Google Scholar
  44. Van Bogaert, R., K. Hanece, J. Hoogesteger, C. Jonasson, M.D. Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography 38: 907–921.CrossRefGoogle Scholar
  45. Walker, D.A., M.K. Raynolds, F.J.A. Daniëls, E. Einarsson, A. Elvebakk, W.A. Gould, A.E. Katenin, S. Kholod, et al. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16: 267–282.CrossRefGoogle Scholar
  46. Walsh, C., and R Mac Nally. 2003. The hier.part Package: Hierarchical Partitioning. (Part of: Documentation for R: A language and environment for statistical computing.)Google Scholar
  47. Wiens, J.A., D. Stralberg, D. Jongsomjit, C.A. Howell, and M.A. Snyder. 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America 106: 19729–19736.CrossRefGoogle Scholar
  48. Zhenlin, Y., E. Hanna, and T.V. Callaghan. 2011. Modelling surface-air-temperature variation over complex terrain around Abisko, Swedish Lapland: Uncertainties of measurements and models at different scales. Geografiska Annaler: Series A, Physical Geography 93: 89–112. doi: 10.1111/j.1468-0459.2011.00005.x.CrossRefGoogle Scholar
  49. Zhenlin, Y., E. Hanna, T.V. Callaghan, and C. Jonasson. 2012. How can meteorological observations and microclimate simulations improve understanding of 1913–2010 climate change around Abisko, Swedish Lapland? Meteorological Applications. doi: 10.1002/met.276.

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Zhenlin Yang
    • 1
  • Martin T. Sykes
    • 1
  • Edward Hanna
    • 2
  • Terry V. Callaghan
    • 3
  1. 1.Department of Physical Geography and Ecosystem Science (ENES)Lund UniversityLundSweden
  2. 2.Department of GeographyUniversity of SheffieldSheffieldUK
  3. 3.Royal Swedish Academy of SciencesStockholmSweden

Personalised recommendations