Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment

Abstract

Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andersson, L.I., and H. Hytteborn. 1991. Bryophytes and decaying wood—A comparison between managed and natural forest. Holarctic Ecology 14: 121–130.

    Google Scholar 

  2. Ayres, E., H. Steltzer, S. Berg, M.D. Wallenstein, B.L. Simmons, and D.H. Wall. 2009. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests. PLoS ONE 4: e5964.

    Article  Google Scholar 

  3. Bamber, R.K., and K. Fukazawa. 1985. Sapwood and heartwood: A review. Forestry Abstracts 46: 567–580.

    Google Scholar 

  4. Barcélo, A.R. 1997. Lignification in plant cell walls. International Review of Cytology 176: 87–132.

    Article  Google Scholar 

  5. Blanchette, R.A. 1991. Delignification by wood-decay fungi. Annual review of Phytopathology 29: 381–398.

    Article  CAS  Google Scholar 

  6. Brovkin, V., P.M. van Bodegom, T. Kleinen, C. Wirth, W.K. Cornwell, J.H.C. Cornelissen, and J. Kattge. 2012. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9: 565–576.

    Article  CAS  Google Scholar 

  7. Bunnell, F.L., and I. Houde. 2010. Down wood and biodiversity—Implications to forest practices. Environmental Reviews 18: 397–421.

    Article  Google Scholar 

  8. Cadisch, G., and K.E. Giller. 1997. Driven by nature: Plant litter quality and decomposition. Oxon: CAB International.

    Google Scholar 

  9. Castro, A., and D.H. Wise. 2010. Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). Forest Ecology and Management 260: 2088–2101.

    Article  Google Scholar 

  10. Chave, J., D. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson, and A.E. Zanne. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.

    Article  Google Scholar 

  11. Cornelissen, J.H.C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84: 573–582.

    Article  Google Scholar 

  12. Cornelissen, J.H.C., P.M. van Bodegom, R. Aerts, T.V. Callaghan, R.S.P. van Logtestijn, J. Alatalo, F.S. Chapin, R. Gerdol, et al. 2007. Global negative feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10: 619–629.

    Article  Google Scholar 

  13. Cornwell, W.K., J.H.C. Cornelissen, S.D. Allison, J. Bauhus, P. Eggleton, C.M. Preston, F. Scarff, J.T. Weedon, et al. 2009. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Global Change Biology 15: 2431–2449.

    Article  Google Scholar 

  14. Cornwell, W.K., J.H.C. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbie, B. Hoorens, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065–1071.

    Article  Google Scholar 

  15. De Boer, W., and A. Van der Wal. 2008. Interactions between saprotrophic basidiomycetes and bacteria. In Ecology of saptrotrophic basidiomycetes, ed. L. Boddy, J.C. Frankland, and P. van West. Amsterdam: Academic Press.

    Google Scholar 

  16. Dechene, A.D., and C.M. Buddle. 2010. Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest. Biodiversity and Conservation 19: 237–256.

    Article  Google Scholar 

  17. Dickie, I.A., T. Fukami, J.P. Wilkie, R.B. Allen, and P.K. Buchanan. 2012. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecology Letters 15: 133–141.

    Article  Google Scholar 

  18. Dix, N.J., and J. Webster. 1995. Fungal ecology. London: Chapman and Hall.

    Google Scholar 

  19. Enquist, B.J., and K.J. Niklas. 2001. Invariant scaling relations across tree-dominated communities. Nature 410: 655–660.

    Article  CAS  Google Scholar 

  20. Eriksson, K.E., R.A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Berlin: Springer Series in Wood Science.

    Google Scholar 

  21. Fahey, T.J., T.G. Siccama, C.T. Driscoll, G.E. Likens, J. Campbell, C.E. Johnson, J.J. Battles, J.D. Aber, J.J. Cole, et al. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109–176.

    Article  CAS  Google Scholar 

  22. Fajardo, A., and F.I. Piper. 2011. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist 189: 259–271.

    Article  Google Scholar 

  23. Freschet, G.T., R. Aerts, and J.H.C. Cornelissen. 2012a. A plant economics spectrum for decomposition. Functional Ecology 26: 56–65.

    Article  Google Scholar 

  24. Freschet, G.T., R. Aerts, and J.H.C. Cornelissen. 2012b. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology 100: 619–630.

    Google Scholar 

  25. Freschet, G.T., J.T. Weedon, R. Aerts, J. van Hal, and J.H.C. Cornelissen. 2012c. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. Journal of Ecology 100: 161–170.

    Article  Google Scholar 

  26. Fukami, T., I.A. Dickie, J.P. Wilkie, B.C. Paulus, D. Park, A. Roberts, P.K. Buchanan, R.B. Allen, and B. Robert. 2010. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecology Letters 13: 675–684.

    Article  Google Scholar 

  27. Gartner, B.L. 1995. Plant stems: Physiology and functional morphology. San Diego: Academic Press.

    Google Scholar 

  28. Grosser, D. 1985. Pflanzliche und tierische Bau- und Werkholz Schädlinge. Leinfelden-Echterdingen: DRW-Verlag (in German)

  29. Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Reviews in Ecology and Systematics 33: 1–23.

    Article  Google Scholar 

  30. Harmon, M.E. 2009. Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In Old-growth forests: Function, fate and value, Ecological studies 207, ed. C. Wirth, G. Gleixner, and M. Heimann. Berlin: Springer.

  31. Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, and M. Yatkov. 2011. Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species. Research Paper NRS-15. Newtown Square, PA: U.S. Department of Agriculture, Forest Service.

  32. Harmon, M.E., J.F. Franklin, F.J. Swanson, P. Sollins, S.V. Gregory, J.D. Lattin, N.H. Anderson, S.P. Cline, et al. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.

    Article  Google Scholar 

  33. Hillis, W.E. 1987. Heartwood and tree exudates. New York: Springer.

    Google Scholar 

  34. Hottola, J., O. Ovaskainen, and I. Hanski. 2009. A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. Journal of Ecology 97: 1320–1328.

    Article  Google Scholar 

  35. Humphrey, J.W., S. Davey, A.J. Pearce, R. Ferris, and K. Harding. 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and deadwood. Biological Conservation 107: 165–180.

    Article  Google Scholar 

  36. Irmler, U., K. Heller, and J. Warning. 1996. Age and tree species as factors influencing the populations of insects living in dead wood (Coleoptera, Diptera: Sciaridae, Mycetophilidae). Pedobiologia 40: 134–148.

    Google Scholar 

  37. Janssen, P., C. Hebert, and D. Fortin. 2011. Biodiversity conservation in old-growth boreal forest: Black spruce and balsam fir snags harbour distinct assemblages of saproxylic beetles. Biodiversity and Conservation 20: 2917–2932.

    Article  Google Scholar 

  38. Jonsell, M., J. Hansson, and L. Wedmo. 2007. Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biological Conservation 138: 89–99.

    Article  Google Scholar 

  39. Jonsson, M.T., and B.G. Jonsson. 2007. Assessing coarse woody debris in Swedish woodland key habitats: Implications for conservation and management. Forest Ecology and Management 242: 363–373.

    Article  Google Scholar 

  40. Käärik, A.A. 1974. Decomposition of wood. In Biology of plant litter decomposition, ed. C.H. Dickinson, and G.J.F. Pugh. London: Academic Press.

    Google Scholar 

  41. Klaassen, R.K.W.M. 2008. Bacterial decay in wooden foundation piles: patterns and causes. A study on historical pile foundations in the Netherlands. International Biodeterioration and Biodegradation 61: 45–60.

    Article  CAS  Google Scholar 

  42. Koca, D., B. Smith, and M. Sykes. 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change 78: 381–406.

    Article  CAS  Google Scholar 

  43. Kruys, N., and B.G. Jonsson. 1999. Fine wood debris is important for species richness on logs in managed boreal spruce forest of Northern Sweden. Canadian Journal of Forest Research 29: 1295–1299.

    Article  Google Scholar 

  44. Laiho, R., and C.E. Prescott. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34: 763–778.

    Article  CAS  Google Scholar 

  45. Lindahl, B.O., A.F.S. Taylor, and R.D. Finlay. 2002. Defining nutritional constraints on carbon cycling in boreal forests—Towards a less ‘phytocentric’ perspective. Plant and Soil 242: 123–135.

    Article  CAS  Google Scholar 

  46. McGuire, K.L., and K.K. Treseder. 2010. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biology & Biochemistry 42: 529–535.

    Article  CAS  Google Scholar 

  47. Müller-Using, S., and N. Bartsch. 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. European Journal of Forest Research 128: 287–296.

    Article  Google Scholar 

  48. Nilsson, T., and G.F. Daniel. 1983. Tunneling bacteria. International Research Group for Wood Preservation No. 1186.

  49. Nilsson, T., and A.P. Singh. 1984. Cavitation bacteria. The International Research Group on Wood Preservation. Document No IRG/WP/1235.

  50. Nilsson, T., and C. Björdal. 2008. Culturing wood-degrading erosion bacteria. International Biodeterioration and Biodegradation 61: 3–10.

    Article  CAS  Google Scholar 

  51. Nordén, B., and H. Paltto. 2001. Wood-decay fungi in hazel wood: Species richness correlated to stand age and dead wood features. Biological Conservation 101: 1–8.

    Article  Google Scholar 

  52. Odor, P., J. Heilmann-Clausen, M. Christensen, E. Aude, K.W. van Dort, A. Piltaver, I. Siller, M.T. Veerkamp, et al. 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation 131: 58–71.

    Article  Google Scholar 

  53. Onega, T.L., and W.G. Eickmeier. 1991. Woody detritus inputs and decomposition kinetics in a southern temperate deciduous forest. Bulletin of the Torrey Botany Club 118: 52–57.

    Article  Google Scholar 

  54. Palviainen, M., L. Finer, R. Laiho, E. Shorohova, E. Kapitsa, and I. Vanha-Majamaa. 2010. Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management 259: 390–398.

    Article  Google Scholar 

  55. Pandey, K.K., and A.J. Pitman. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation 52: 151–160.

    Article  CAS  Google Scholar 

  56. Panshin, A.J., and C. de Zeeuw. 1980. Textbook of wood technology, 4th ed. New York: McGraw-Hill.

    Google Scholar 

  57. Pearce, R.B. 1996. Antimicrobial defences in the wood of living trees. New Phytologist 132: 203–233.

    Article  CAS  Google Scholar 

  58. Quested, H.M., J.H.C. Cornelissen, M.C. Press, T.V. Callaghan, R. Aerts, F. Trosien, P. Riemann, D. Gwynn-Jones, et al. 2003. Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology 84: 3209–3221.

    Article  Google Scholar 

  59. Radtke, P.J., R.L. Amateis, S.P. Prisley, C.A. Copenheaver, D.C. Chojnacky, J.R. Pittman, and H.E. Burkhart. 2009. Modeling production and decay of coarse woody debris in loblolly pine plantations. Forest Ecology and Management 257: 790–799.

    Article  Google Scholar 

  60. Schmidt, O. 2006. Wood and tree fungi—Biology, protection and use. Berlin: Springer.

    Google Scholar 

  61. Schwartze, F.W.M.R., S. Fink, and G. Deflorio. 2003. Resistance of parenchyma cells in wood to degradation by brown rot fungi. Mycological Progress 2: 264–274.

    Google Scholar 

  62. Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, S. Levis, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9: 161–185.

    Article  Google Scholar 

  63. Strickland, M.S., E. Osburn, C. Lauber, N. Fierer, and M.A. Bradford. 2009. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23: 627–636.

    Article  Google Scholar 

  64. Sungpalee, W., A. Itoh, M. Kanzaki, K. Sri-ngernyuang, H. Noguchi, T. Mizuno, S. Teejuntuk, M. Hara, et al. 2009. Intra- and interspecific variation in wood density and fine-scale spatial distribution of stand-level wood density in a northern Thai tropical montane forest. Journal of Tropical Ecology 25: 359–370.

    Article  Google Scholar 

  65. Talbot, J.M., D.J. Yelle, J. Nowick, and K.K. Treseder. 2012. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108: 279–295.

    Article  CAS  Google Scholar 

  66. Taylor, A.M., B.L. Gartner, and J.J. Morrell. 2002. Heartwood formation and natural durability—A review. Wood and Fiber Science 34: 587–611.

    CAS  Google Scholar 

  67. Taylor, B.R., C.E. Prescott, W.J.F. Parsons, and D. Parkinson. 1991. Substrate control of litter decomposition in four Rocky-Mountain coniferous forests. Canadian Journal of Botany 69: 2242–2250.

    Article  Google Scholar 

  68. Toljander, Y.K., B.D. Lindahl, L. Holmer, and N.O.S. Hogberg. 2006. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148: 625–631.

    Article  Google Scholar 

  69. Tsoumis, G. 1991. Science and technology of wood, structure, properties, utilization. New York: Van Nostrand Reinhold.

    Google Scholar 

  70. Ulyshen, M.D., T.M. Pucci, and J.L. Hanula. 2011. The importance of forest type, tree species and wood posture to saproxylic wasp (Hymenoptera) communities in the southeastern United States. Journal of Insect Conservation 15: 539–546.

    Article  Google Scholar 

  71. Valaskova, V., W. de Boer, P.J.A.K. Gunnewiek, M. Pospisek, and P. Baldrian. 2009. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME Journal 3: 1218–1221.

    Article  CAS  Google Scholar 

  72. Van der Wal, A., W. de Boer, W. Smant, and J.A. van Veen. 2007. Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant and Soil 301: 189–201.

    Article  Google Scholar 

  73. Van Geffen, K.G., L. Poorter, U. Sass-Klaassen, R.S.P. van Logtestijn, and J.H.C. Cornelissen. 2010. The trait contribution to wood decomposition rates of 15 neotropical tree species. Ecology 91: 3686–3697.

    Article  Google Scholar 

  74. Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan. 2010. Lignin biosynthesis and structure. Plant Physiology 153: 895–905.

    Article  CAS  Google Scholar 

  75. Wall, D.H., M.A. Bradford, M.G. St, J.A. John, V. Trofymow, D.E. Behan-Pelletier, J.M. Bignell, W.J.Parton Dangerfield, et al. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology 14: 2661–2677.

    Google Scholar 

  76. Weedon, J.T., W.K. Cornwell, J.H.C. Cornelissen, A.E. Zanne, C. Wirth, and D.A. Coomes. 2009. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecology Letters 12: 45–56.

    Article  Google Scholar 

  77. Wirth, C., G. Gleixner, and M. Heimann. 2009. Old-growth forests: Function, fate and value. Berlin: Springer.

    Google Scholar 

  78. Woodall, C.W. 2010. Carbon flux of down woody materials in forests of the North Central United States. International Journal of Forest Research 2010: 1–9.

    Article  Google Scholar 

  79. Yin, X. 1999. The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia 121: 81–98.

    Article  Google Scholar 

  80. Zabel, R.A., and J.J. Morrell. 1992. Wood microbiology: Decay and its prevention. San Diego: Academic Press.

    Google Scholar 

  81. Zak, D.R., K.S. Pregitzer, A.J. Burton, I.P. Edwards, and H. Kellner. 2011. Microbial responses to changing environment: Implications for the future functioning of ecosystems. Fungal Ecology 4: 386–395.

    Article  Google Scholar 

  82. Zanne, A.E., and D.S. Falster. 2010. Plant functional traits—Linkages among stem anatomy, plant performance and life history. New Phytologist 185: 348–351.

    Article  Google Scholar 

  83. Zell, J., G. Kaendler, and M. Hanewinkel. 2009. Predicting constant decay rates of coarse woody debris—A meta analysis approach with a mixed model. Ecological Modelling 220: 904–912.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This contribution is to celebrate Terry Callaghan’s illustrious career in arctic and global change ecology and carbon cycling research, and to thank him for his generous scientific guidance and support to several of the authors over many years. Terry also made important contributions to the leaf litter decomposition experiments in Abisko, which represented an important step towards designing LOGLIFE. We are also grateful to Jop de Klein and the Schovenhorst Estate, Putten, for hosting one half of the LOGLIFE experiment; and to the National Forestry Commission (Staatsbosbeheer), particularly Jaap Rouwenhorst and Jos Rutten, for facilitating and hosting the other half of LOGLIFE in Hollandse Hout, Flevoland. Rienk-Jan Bijlsma (ALTERRA, Wageningen University) helped us to identify the best incubation site there in the forest reserve. Jasper Wubs, Stefan Jongste, Henk van Roekel, Gerard Mekking, Thomas Geydan, Max Rudnick, Olaf Tyc, Maria Hundscheid, Nic van der Velden, Annemiek Reijngoud and Myrthe Fonck kindly helped with fieldwork. Funding of the subproject mentioned in Box 1 was provided by the Netherlands Organisation of Scientific Research (NWO) in the form of a personal VENI grant to A. v.d. Wal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes H. C. Cornelissen.

Additional information

A complete list of author biographies is given as electronic supplementary material.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cornelissen, J.H.C., Sass-Klaassen, U., Poorter, L. et al. Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. AMBIO 41, 231–245 (2012). https://doi.org/10.1007/s13280-012-0304-3

Download citation

Keywords

  • Coarse woody debris
  • Wood decomposition
  • Forest
  • Functional trait
  • Fungi
  • Invertebrates