AMBIO

, Volume 41, Supplement 3, pp 231–245 | Cite as

Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment

  • Johannes H. C. Cornelissen
  • Ute Sass-Klaassen
  • Lourens Poorter
  • Koert van Geffen
  • Richard S. P. van Logtestijn
  • Jurgen van Hal
  • Leo Goudzwaard
  • Frank J. Sterck
  • René K. W. M. Klaassen
  • Grégoire T. Freschet
  • Annemieke van der Wal
  • Henk Eshuis
  • Juan Zuo
  • Wietse de Boer
  • Teun Lamers
  • Monique Weemstra
  • Vincent Cretin
  • Rozan Martin
  • Jan den Ouden
  • Matty P. Berg
  • Rien Aerts
  • Godefridus M. J. Mohren
  • Mariet M. Hefting
Article

Abstract

Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.

Keywords

Coarse woody debris Wood decomposition Forest Functional trait Fungi Invertebrates 

Supplementary material

13280_2012_304_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 71 kb)

References

  1. Andersson, L.I., and H. Hytteborn. 1991. Bryophytes and decaying wood—A comparison between managed and natural forest. Holarctic Ecology 14: 121–130.Google Scholar
  2. Ayres, E., H. Steltzer, S. Berg, M.D. Wallenstein, B.L. Simmons, and D.H. Wall. 2009. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests. PLoS ONE 4: e5964.CrossRefGoogle Scholar
  3. Bamber, R.K., and K. Fukazawa. 1985. Sapwood and heartwood: A review. Forestry Abstracts 46: 567–580.Google Scholar
  4. Barcélo, A.R. 1997. Lignification in plant cell walls. International Review of Cytology 176: 87–132.CrossRefGoogle Scholar
  5. Blanchette, R.A. 1991. Delignification by wood-decay fungi. Annual review of Phytopathology 29: 381–398.CrossRefGoogle Scholar
  6. Brovkin, V., P.M. van Bodegom, T. Kleinen, C. Wirth, W.K. Cornwell, J.H.C. Cornelissen, and J. Kattge. 2012. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9: 565–576.CrossRefGoogle Scholar
  7. Bunnell, F.L., and I. Houde. 2010. Down wood and biodiversity—Implications to forest practices. Environmental Reviews 18: 397–421.CrossRefGoogle Scholar
  8. Cadisch, G., and K.E. Giller. 1997. Driven by nature: Plant litter quality and decomposition. Oxon: CAB International.Google Scholar
  9. Castro, A., and D.H. Wise. 2010. Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). Forest Ecology and Management 260: 2088–2101.CrossRefGoogle Scholar
  10. Chave, J., D. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson, and A.E. Zanne. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.CrossRefGoogle Scholar
  11. Cornelissen, J.H.C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84: 573–582.CrossRefGoogle Scholar
  12. Cornelissen, J.H.C., P.M. van Bodegom, R. Aerts, T.V. Callaghan, R.S.P. van Logtestijn, J. Alatalo, F.S. Chapin, R. Gerdol, et al. 2007. Global negative feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10: 619–629.CrossRefGoogle Scholar
  13. Cornwell, W.K., J.H.C. Cornelissen, S.D. Allison, J. Bauhus, P. Eggleton, C.M. Preston, F. Scarff, J.T. Weedon, et al. 2009. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Global Change Biology 15: 2431–2449.CrossRefGoogle Scholar
  14. Cornwell, W.K., J.H.C. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbie, B. Hoorens, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065–1071.CrossRefGoogle Scholar
  15. De Boer, W., and A. Van der Wal. 2008. Interactions between saprotrophic basidiomycetes and bacteria. In Ecology of saptrotrophic basidiomycetes, ed. L. Boddy, J.C. Frankland, and P. van West. Amsterdam: Academic Press.Google Scholar
  16. Dechene, A.D., and C.M. Buddle. 2010. Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest. Biodiversity and Conservation 19: 237–256.CrossRefGoogle Scholar
  17. Dickie, I.A., T. Fukami, J.P. Wilkie, R.B. Allen, and P.K. Buchanan. 2012. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecology Letters 15: 133–141.CrossRefGoogle Scholar
  18. Dix, N.J., and J. Webster. 1995. Fungal ecology. London: Chapman and Hall.Google Scholar
  19. Enquist, B.J., and K.J. Niklas. 2001. Invariant scaling relations across tree-dominated communities. Nature 410: 655–660.CrossRefGoogle Scholar
  20. Eriksson, K.E., R.A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Berlin: Springer Series in Wood Science.CrossRefGoogle Scholar
  21. Fahey, T.J., T.G. Siccama, C.T. Driscoll, G.E. Likens, J. Campbell, C.E. Johnson, J.J. Battles, J.D. Aber, J.J. Cole, et al. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109–176.CrossRefGoogle Scholar
  22. Fajardo, A., and F.I. Piper. 2011. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist 189: 259–271.CrossRefGoogle Scholar
  23. Freschet, G.T., R. Aerts, and J.H.C. Cornelissen. 2012a. A plant economics spectrum for decomposition. Functional Ecology 26: 56–65.CrossRefGoogle Scholar
  24. Freschet, G.T., R. Aerts, and J.H.C. Cornelissen. 2012b. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology 100: 619–630.Google Scholar
  25. Freschet, G.T., J.T. Weedon, R. Aerts, J. van Hal, and J.H.C. Cornelissen. 2012c. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. Journal of Ecology 100: 161–170.CrossRefGoogle Scholar
  26. Fukami, T., I.A. Dickie, J.P. Wilkie, B.C. Paulus, D. Park, A. Roberts, P.K. Buchanan, R.B. Allen, and B. Robert. 2010. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecology Letters 13: 675–684.CrossRefGoogle Scholar
  27. Gartner, B.L. 1995. Plant stems: Physiology and functional morphology. San Diego: Academic Press.Google Scholar
  28. Grosser, D. 1985. Pflanzliche und tierische Bau- und Werkholz Schädlinge. Leinfelden-Echterdingen: DRW-Verlag (in German)Google Scholar
  29. Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Reviews in Ecology and Systematics 33: 1–23.CrossRefGoogle Scholar
  30. Harmon, M.E. 2009. Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In Old-growth forests: Function, fate and value, Ecological studies 207, ed. C. Wirth, G. Gleixner, and M. Heimann. Berlin: Springer.Google Scholar
  31. Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, and M. Yatkov. 2011. Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species. Research Paper NRS-15. Newtown Square, PA: U.S. Department of Agriculture, Forest Service.Google Scholar
  32. Harmon, M.E., J.F. Franklin, F.J. Swanson, P. Sollins, S.V. Gregory, J.D. Lattin, N.H. Anderson, S.P. Cline, et al. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.CrossRefGoogle Scholar
  33. Hillis, W.E. 1987. Heartwood and tree exudates. New York: Springer.CrossRefGoogle Scholar
  34. Hottola, J., O. Ovaskainen, and I. Hanski. 2009. A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. Journal of Ecology 97: 1320–1328.CrossRefGoogle Scholar
  35. Humphrey, J.W., S. Davey, A.J. Pearce, R. Ferris, and K. Harding. 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and deadwood. Biological Conservation 107: 165–180.CrossRefGoogle Scholar
  36. Irmler, U., K. Heller, and J. Warning. 1996. Age and tree species as factors influencing the populations of insects living in dead wood (Coleoptera, Diptera: Sciaridae, Mycetophilidae). Pedobiologia 40: 134–148.Google Scholar
  37. Janssen, P., C. Hebert, and D. Fortin. 2011. Biodiversity conservation in old-growth boreal forest: Black spruce and balsam fir snags harbour distinct assemblages of saproxylic beetles. Biodiversity and Conservation 20: 2917–2932.CrossRefGoogle Scholar
  38. Jonsell, M., J. Hansson, and L. Wedmo. 2007. Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biological Conservation 138: 89–99.CrossRefGoogle Scholar
  39. Jonsson, M.T., and B.G. Jonsson. 2007. Assessing coarse woody debris in Swedish woodland key habitats: Implications for conservation and management. Forest Ecology and Management 242: 363–373.CrossRefGoogle Scholar
  40. Käärik, A.A. 1974. Decomposition of wood. In Biology of plant litter decomposition, ed. C.H. Dickinson, and G.J.F. Pugh. London: Academic Press.Google Scholar
  41. Klaassen, R.K.W.M. 2008. Bacterial decay in wooden foundation piles: patterns and causes. A study on historical pile foundations in the Netherlands. International Biodeterioration and Biodegradation 61: 45–60.CrossRefGoogle Scholar
  42. Koca, D., B. Smith, and M. Sykes. 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change 78: 381–406.CrossRefGoogle Scholar
  43. Kruys, N., and B.G. Jonsson. 1999. Fine wood debris is important for species richness on logs in managed boreal spruce forest of Northern Sweden. Canadian Journal of Forest Research 29: 1295–1299.CrossRefGoogle Scholar
  44. Laiho, R., and C.E. Prescott. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34: 763–778.CrossRefGoogle Scholar
  45. Lindahl, B.O., A.F.S. Taylor, and R.D. Finlay. 2002. Defining nutritional constraints on carbon cycling in boreal forests—Towards a less ‘phytocentric’ perspective. Plant and Soil 242: 123–135.CrossRefGoogle Scholar
  46. McGuire, K.L., and K.K. Treseder. 2010. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biology & Biochemistry 42: 529–535.CrossRefGoogle Scholar
  47. Müller-Using, S., and N. Bartsch. 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. European Journal of Forest Research 128: 287–296.CrossRefGoogle Scholar
  48. Nilsson, T., and G.F. Daniel. 1983. Tunneling bacteria. International Research Group for Wood Preservation No. 1186.Google Scholar
  49. Nilsson, T., and A.P. Singh. 1984. Cavitation bacteria. The International Research Group on Wood Preservation. Document No IRG/WP/1235.Google Scholar
  50. Nilsson, T., and C. Björdal. 2008. Culturing wood-degrading erosion bacteria. International Biodeterioration and Biodegradation 61: 3–10.CrossRefGoogle Scholar
  51. Nordén, B., and H. Paltto. 2001. Wood-decay fungi in hazel wood: Species richness correlated to stand age and dead wood features. Biological Conservation 101: 1–8.CrossRefGoogle Scholar
  52. Odor, P., J. Heilmann-Clausen, M. Christensen, E. Aude, K.W. van Dort, A. Piltaver, I. Siller, M.T. Veerkamp, et al. 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation 131: 58–71.CrossRefGoogle Scholar
  53. Onega, T.L., and W.G. Eickmeier. 1991. Woody detritus inputs and decomposition kinetics in a southern temperate deciduous forest. Bulletin of the Torrey Botany Club 118: 52–57.CrossRefGoogle Scholar
  54. Palviainen, M., L. Finer, R. Laiho, E. Shorohova, E. Kapitsa, and I. Vanha-Majamaa. 2010. Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management 259: 390–398.CrossRefGoogle Scholar
  55. Pandey, K.K., and A.J. Pitman. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation 52: 151–160.CrossRefGoogle Scholar
  56. Panshin, A.J., and C. de Zeeuw. 1980. Textbook of wood technology, 4th ed. New York: McGraw-Hill.Google Scholar
  57. Pearce, R.B. 1996. Antimicrobial defences in the wood of living trees. New Phytologist 132: 203–233.CrossRefGoogle Scholar
  58. Quested, H.M., J.H.C. Cornelissen, M.C. Press, T.V. Callaghan, R. Aerts, F. Trosien, P. Riemann, D. Gwynn-Jones, et al. 2003. Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology 84: 3209–3221.CrossRefGoogle Scholar
  59. Radtke, P.J., R.L. Amateis, S.P. Prisley, C.A. Copenheaver, D.C. Chojnacky, J.R. Pittman, and H.E. Burkhart. 2009. Modeling production and decay of coarse woody debris in loblolly pine plantations. Forest Ecology and Management 257: 790–799.CrossRefGoogle Scholar
  60. Schmidt, O. 2006. Wood and tree fungi—Biology, protection and use. Berlin: Springer.Google Scholar
  61. Schwartze, F.W.M.R., S. Fink, and G. Deflorio. 2003. Resistance of parenchyma cells in wood to degradation by brown rot fungi. Mycological Progress 2: 264–274.Google Scholar
  62. Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, S. Levis, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9: 161–185.CrossRefGoogle Scholar
  63. Strickland, M.S., E. Osburn, C. Lauber, N. Fierer, and M.A. Bradford. 2009. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23: 627–636.CrossRefGoogle Scholar
  64. Sungpalee, W., A. Itoh, M. Kanzaki, K. Sri-ngernyuang, H. Noguchi, T. Mizuno, S. Teejuntuk, M. Hara, et al. 2009. Intra- and interspecific variation in wood density and fine-scale spatial distribution of stand-level wood density in a northern Thai tropical montane forest. Journal of Tropical Ecology 25: 359–370.CrossRefGoogle Scholar
  65. Talbot, J.M., D.J. Yelle, J. Nowick, and K.K. Treseder. 2012. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108: 279–295.CrossRefGoogle Scholar
  66. Taylor, A.M., B.L. Gartner, and J.J. Morrell. 2002. Heartwood formation and natural durability—A review. Wood and Fiber Science 34: 587–611.Google Scholar
  67. Taylor, B.R., C.E. Prescott, W.J.F. Parsons, and D. Parkinson. 1991. Substrate control of litter decomposition in four Rocky-Mountain coniferous forests. Canadian Journal of Botany 69: 2242–2250.CrossRefGoogle Scholar
  68. Toljander, Y.K., B.D. Lindahl, L. Holmer, and N.O.S. Hogberg. 2006. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148: 625–631.CrossRefGoogle Scholar
  69. Tsoumis, G. 1991. Science and technology of wood, structure, properties, utilization. New York: Van Nostrand Reinhold.Google Scholar
  70. Ulyshen, M.D., T.M. Pucci, and J.L. Hanula. 2011. The importance of forest type, tree species and wood posture to saproxylic wasp (Hymenoptera) communities in the southeastern United States. Journal of Insect Conservation 15: 539–546.CrossRefGoogle Scholar
  71. Valaskova, V., W. de Boer, P.J.A.K. Gunnewiek, M. Pospisek, and P. Baldrian. 2009. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME Journal 3: 1218–1221.CrossRefGoogle Scholar
  72. Van der Wal, A., W. de Boer, W. Smant, and J.A. van Veen. 2007. Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant and Soil 301: 189–201.CrossRefGoogle Scholar
  73. Van Geffen, K.G., L. Poorter, U. Sass-Klaassen, R.S.P. van Logtestijn, and J.H.C. Cornelissen. 2010. The trait contribution to wood decomposition rates of 15 neotropical tree species. Ecology 91: 3686–3697.CrossRefGoogle Scholar
  74. Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan. 2010. Lignin biosynthesis and structure. Plant Physiology 153: 895–905.CrossRefGoogle Scholar
  75. Wall, D.H., M.A. Bradford, M.G. St, J.A. John, V. Trofymow, D.E. Behan-Pelletier, J.M. Bignell, W.J.Parton Dangerfield, et al. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology 14: 2661–2677.Google Scholar
  76. Weedon, J.T., W.K. Cornwell, J.H.C. Cornelissen, A.E. Zanne, C. Wirth, and D.A. Coomes. 2009. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecology Letters 12: 45–56.CrossRefGoogle Scholar
  77. Wirth, C., G. Gleixner, and M. Heimann. 2009. Old-growth forests: Function, fate and value. Berlin: Springer.CrossRefGoogle Scholar
  78. Woodall, C.W. 2010. Carbon flux of down woody materials in forests of the North Central United States. International Journal of Forest Research 2010: 1–9.CrossRefGoogle Scholar
  79. Yin, X. 1999. The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia 121: 81–98.CrossRefGoogle Scholar
  80. Zabel, R.A., and J.J. Morrell. 1992. Wood microbiology: Decay and its prevention. San Diego: Academic Press.Google Scholar
  81. Zak, D.R., K.S. Pregitzer, A.J. Burton, I.P. Edwards, and H. Kellner. 2011. Microbial responses to changing environment: Implications for the future functioning of ecosystems. Fungal Ecology 4: 386–395.CrossRefGoogle Scholar
  82. Zanne, A.E., and D.S. Falster. 2010. Plant functional traits—Linkages among stem anatomy, plant performance and life history. New Phytologist 185: 348–351.CrossRefGoogle Scholar
  83. Zell, J., G. Kaendler, and M. Hanewinkel. 2009. Predicting constant decay rates of coarse woody debris—A meta analysis approach with a mixed model. Ecological Modelling 220: 904–912.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Johannes H. C. Cornelissen
    • 1
  • Ute Sass-Klaassen
    • 2
  • Lourens Poorter
    • 2
  • Koert van Geffen
    • 3
  • Richard S. P. van Logtestijn
    • 1
  • Jurgen van Hal
    • 1
  • Leo Goudzwaard
    • 2
  • Frank J. Sterck
    • 2
  • René K. W. M. Klaassen
    • 4
  • Grégoire T. Freschet
    • 6
  • Annemieke van der Wal
    • 5
  • Henk Eshuis
    • 2
  • Juan Zuo
    • 1
  • Wietse de Boer
    • 5
  • Teun Lamers
    • 2
  • Monique Weemstra
    • 2
  • Vincent Cretin
    • 2
  • Rozan Martin
    • 7
  • Jan den Ouden
    • 2
  • Matty P. Berg
    • 8
  • Rien Aerts
    • 1
  • Godefridus M. J. Mohren
    • 2
  • Mariet M. Hefting
    • 7
  1. 1.Systems Ecology, Department of Ecological Science, Faculty of Earth and Life SciencesVU UniversityAmsterdamThe Netherlands
  2. 2.Forest Ecology and Forest Management Group, Centre for EcosystemsWageningen UniversityWageningenThe Netherlands
  3. 3.Nature Conservation and Plant Ecology GroupWageningen UniversityWageningenThe Netherlands
  4. 4.SHR Timber ResearchWageningenThe Netherlands
  5. 5.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  6. 6.Department of Forest Ecology and Management at SLUUmeåSweden
  7. 7.Ecology and Biodiversity Group, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
  8. 8.Animal Ecology, Department of Ecological Science, Faculty of Earth and Life SciencesVU UniversityAmsterdamThe Netherlands

Personalised recommendations