, Volume 41, Supplement 2, pp 143–148 | Cite as

Quantitative Evaluation of Electron Injection Efficiency in Dye-Sensitized TiO2 Films

  • Ryuzi Katoh


The efficiency of electron injection (Φinj) in dye-sensitized nanocrystalline films was studied through transient absorption (TA) and time-resolved microwave conductivity (TRMC) measurements. Here, I show the absolute value of Φinj for several dye-sensitized nanocrystalline films and discuss the relationship between Φinj and the free energy change (−ΔG inj) for the injection process. Some systems exhibited lower Φinj values even when −ΔG inj was sufficiently large to promote electron injection. Recent experimental findings are used to propose possible explanations for this phenomenon. Quantitative evaluation of Φinj using TA and TRMC will give us new insights for developing high-performance solar cell devices.


Dye-sensitized solar cells Transient absorption spectroscopy Time-resolved microwave conductivity Electron injection efficiency Free energy change 



This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.


  1. Asbury, J.B., E. Hao, Y.Q. Wang, H.N. Ghosh, and T.Q. Lian. 2001. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. Journal of Physical Chemistry B 105: 4545–4557.CrossRefGoogle Scholar
  2. Benkö, G., J. Kallioinen, J.E.I. Korppi-Tommola, A.P. Yartsev, and V. Sundström. 2002. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. Journal of the American Chemical Society 124: 489–493.CrossRefGoogle Scholar
  3. Bessho, T., S.M. Zakeeruddin, C.Y. Yeh, E.W.G. Diau, and M. Grätzel. 2010. Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angewandte Chemie 49: 6646–6649.CrossRefGoogle Scholar
  4. Chiba, Y., A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L.Y. Han. 2006. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45: L638–L640.CrossRefGoogle Scholar
  5. Durrant, J.R., S.A. Haque, and E. Palomares. 2006. Photochemical energy conversion: from molecular dyads to solar cells. Chemical Communications 37: 3279–3289.Google Scholar
  6. Furube, A., R. Katoh, K. Hara, T. Sato, S. Murata, H. Arakawa, and M. Tachiya. 2005. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy. Journal of Physical Chemistry B 109: 16406–16414.CrossRefGoogle Scholar
  7. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson. 2010. Dye-sensitized solar cells. Chemical Reviews 110: 6595–6663.CrossRefGoogle Scholar
  8. Imahori, H., S. Kang, H. Hayashi, M. Haruta, H. Kurata, S. Isoda, S.E. Canton, Y. Infahsaeng, et al. 2011. Photoinduced charge carrier dynamics of Zn–porphyrin–TiO2 electrodes: The key role of charge recombination for solar cell performance. Journal of Physical Chemistry A 115: 3679–3690.CrossRefGoogle Scholar
  9. Katoh, R., and A. Furube. 2010. Efficiency of electron injection in dye-sensitized semiconductor films. Key Engineering Materials 451: 79–95.CrossRefGoogle Scholar
  10. Katoh, R., A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa, and M. Tachiya. 2002. Efficiencies of electron injection from excited sensitizer dyes to nano-crystalline ZnO films as studied by near-IR optical absorption of injected electrons. Journal of Physical Chemistry B 106: 12957–12964.CrossRefGoogle Scholar
  11. Katoh, R., A. Furube, A.V. Barzykin, H. Arakawa, and M. Tachiya. 2004. Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coordination Chemistry Reviews 248: 1195–1213.CrossRefGoogle Scholar
  12. Katoh, R., A. Huijser, K. Hara, T.J. Savenije, and L.D.A. Siebbeles. 2007. Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements. Journal of Physical Chemistry C 111: 10741–10746.CrossRefGoogle Scholar
  13. Katoh, R., M. Kasuya, A. Furube, N. Fuke, N. Koide, and L. Han. 2009a. Recombination rate between dye cations and electrons in N719-sensitized nanocrystalline TiO2 films under substantially weak excitation conditions. Chemical Physics Letters 471: 280–282.CrossRefGoogle Scholar
  14. Katoh, R., A. Furube, M. Kasuya, N. Fuke, N. Koide, and L. Han. 2009b. Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films. Solar Energy Materials and Solar Cells 93: 698–703.CrossRefGoogle Scholar
  15. Katoh, R., A. Furube, S. Mori, M. Miyashita, K. Sunahara, N. Koumura, and K. Hara. 2009c. Highly stable sensitizer dyes for dye-sensitized solar cells: Role of oligothiophene moiety. Energy & Environmental Science 2: 542–546.CrossRefGoogle Scholar
  16. Kelly, C.A., and G.J. Meyer. 2001. Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces. Coordination Chemistry Reviews 211: 295–315.CrossRefGoogle Scholar
  17. Nazeeruddin, M.K., P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, et al. 2001. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 123: 1613–1624.CrossRefGoogle Scholar
  18. O’Regan, B., and M. Grätzel. 1991. A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 335: 737–740.CrossRefGoogle Scholar
  19. Yoshihara, T., R. Katoh, A. Furube, M. Murai, Y. Tamaki, K. Hara, S. Murata, H. Arakawa, et al. 2004a. Quantitative estimation of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film. Journal of Physical Chemistry B 108: 2643–2647.CrossRefGoogle Scholar
  20. Yoshihara, T., R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, and M. Tachiya. 2004b. Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. Journal of Physical Chemistry B 108: 3817–3823.CrossRefGoogle Scholar
  21. Yoshihara, T., M. Murai, Y. Tamaki, A. Furube, and R. Katoh. 2004c. Trace analysis by transient absorption spectroscopy: Estimation of the solubility of C60 in polar solvents. Chemical Physics Letters 394: 161–164.CrossRefGoogle Scholar
  22. Wiberg, J., T. Marinado, D.P. Hagberg, L. Sun, A. Hagfeldt, and B. Albinsson. 2009. Effect of anchoring group on electron injection and recombination dynamics in organic dye-sensitized solar cells. Journal of Physical Chemistry C 113: 3881–3886.CrossRefGoogle Scholar
  23. Zhang, X.-H., C. Yan, R. Katoh, N. Koumura, and K. Hara. 2010. Thieno(3,2-b)indole based organic dyes for efficient dye-sensitized solar cells. Journal of Physical Chemistry C 114: 18283–18290.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Chemical Biology and Applied ChemistryNihon University, College of EngineeringKoriyamaJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations