Advertisement

AMBIO

, Volume 41, Supplement 2, pp 138–142 | Cite as

Alternating Copolymers and Alternative Device Geometries for Organic Photovoltaics

  • Olle Inganäs
  • Fengling Zhang
  • Mats R. Andersson
Article
  • 211 Downloads

Abstract

The efficiency of conversion of light to electrical energy with the help of conjugated polymers and molecules is rapidly improving. The optical absorption properties of these materials can be designed, and implemented via molecular engineering. Full coverage of the solar spectrum is thus feasible. Narrow absorption spectra allow construction of tandem solar cells. The poor transport properties of these materials require thin devices, which limits optical absorption. Alternative device geometries for these flexible materials compensate for the optical absorption by light trapping, and allow tandem cells.

Keywords

Photovoltaic energy conversion Bulk heterojunctions Polymer solar cell Organic photovoltaics 

Notes

Acknowledgments

The study summarized here has been performed by a great number of students, postdocs, and guest scientists within the Center of Organic Electronics (COE), financed by the Strategic Research Foundation of Sweden, and more recently by the Swedish Energy Agency. Stefan Hellström, Viktor Andersson, and Kristofer Tvingstedt prepared figures.

References

  1. Blankenship, R.E., D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332: 805–809.CrossRefGoogle Scholar
  2. Clarke, T.M., and J.R. Durrant. 2010. Charge photogeneration in organic solar cells. Chemical Reviews 110: 6736–6767.CrossRefGoogle Scholar
  3. Deibel, C., and V. Dyakonov. 2010. Polymer-fullerene bulk heterojunction solar cells. Reports on Progress in Physics 73: 096401.CrossRefGoogle Scholar
  4. Deibel, C., V. Dyakonov, and C.J. Brabec. 2010. Organic bulk-heterojunction solar cells. IEEE Journal of Selected Topics in Quantum Electronics 16: 1517–1527.CrossRefGoogle Scholar
  5. Dennler, G., M.C. Scharber, and C.J. Brabec. 2009. Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials 21: 1323–1338.CrossRefGoogle Scholar
  6. Gadisa, A., M. Svensson, M.R. Andersson, and O. Inganäs. 2004. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Applied Physics Letters 84: 1609–1611.CrossRefGoogle Scholar
  7. Green, M.A., K. Emery, Y. Hishikawa, and W. Warta. 2011. Solar cell efficiency tables (version 37). Progress in Photovoltaics 19: 84–92.CrossRefGoogle Scholar
  8. Halls, J.J.M., C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes. 1995. Efficient photodiodes from interpenetrating polymer networks. Nature 376: 498–500.CrossRefGoogle Scholar
  9. Inganäs, O. 2011. Organic photovoltaics: avoiding indium. Nature Photonics 5: 201–202.CrossRefGoogle Scholar
  10. Inganäs, O., F.L. Zhang, and M.R. Andersson. 2009. Alternating polyfluorenes collect solar light in polymer photovoltaics. Accounts of Chemical Research 42: 1731–1739.CrossRefGoogle Scholar
  11. Inganäs, O., F.L. Zhang, K. Tvingstedt, L.M. Andersson, S. Hellström, M.R., and Andersson. 2010. Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Advanced Materials 22: E100–E116.Google Scholar
  12. Pettersson, L.A.A., L.S. Roman, and O. Inganäs. 1999. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 86: 487–496.CrossRefGoogle Scholar
  13. Ruani, G., C. Fontanini, M. Murgia, and C. Taliani. 2002. Weak intrinsic charge transfer complexes: A new route for developing wide spectrum organic photovoltaic cells. Journal of Chemical Physics 116: 1713–1719.CrossRefGoogle Scholar
  14. Service, R.F. 2011. Outlook brightens for plastic solar cells. Science 332: 293–293.Google Scholar
  15. Svensson, M., F.L. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, and M.R. Andersson. 2003. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials 15: 988–991.CrossRefGoogle Scholar
  16. Tang, C.W. 1986. 2-Layer organic photovoltaic cell. Applied Physics Letters 48: 183–185.CrossRefGoogle Scholar
  17. Tvingstedt, K., V. Andersson, F. Zhang, and O. Inganäs. 2007a. Folded reflective tandem polymer solar cell doubles efficiency. Applied Physics Letters 91: 123514.CrossRefGoogle Scholar
  18. Tvingstedt, K., N.K. Persson, O. Inganäs, A. Rahachou, and I.V. Zozoulenko. 2007b. Surface plasmon increase absorption in polymer photovoltaic cells. Applied Physics Letters 91: 113514.CrossRefGoogle Scholar
  19. Tvingstedt, K., S. Dal Zilio, O. Inganäs, and M. Tormen. 2008. Trapping light with micro lenses in thin film organic photovoltaic cells. Optics Express 16: 21608–21615.CrossRefGoogle Scholar
  20. Tvingstedt, K., K. Vandewal, A. Gadisa, F.L. Zhang, J. Manca, and O. Inganäs. 2009. Electroluminescence from charge transfer states in polymer solar cells. Journal of the American Chemical Society 131: 11819–11824.CrossRefGoogle Scholar
  21. Tvingstedt, K., K. Vandewal, F.L. Zhang, and O. Inganäs. 2010. On the dissociation efficiency of charge transfer excitons and Frenkel excitons in organic solar cells: A luminescence quenching study. Journal of Physical Chemistry C 114: 21824–21832.CrossRefGoogle Scholar
  22. Vandewal, K., K. Tvingstedt, A. Gadisa, O. Inganäs, and J.V. Manca. 2009. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nature Materials 8: 904–909.CrossRefGoogle Scholar
  23. Vandewal, K., K. Tvingstedt, A. Gadisa, O. Inganäs, and J.V. Manca. 2010a. Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Physical Review B 81: 125204.Google Scholar
  24. Vandewal, K., K. Tvingstedt, J.V. Manca, and O. Inganäs. 2010b. Charge-transfer states and upper limit of the open-circuit voltage in polymer: Fullerene organic solar cells. IEEE Journal of Selected Topics in Quantum Electronics 16: 1676–1684.CrossRefGoogle Scholar
  25. Wang, E.G., L.T. Hou, Z.Q. Wang, S. Hellström, F.L. Zhang, O. Inganäs, and M.R. Andersson. 2010a. An easily synthesized blue polymer for high-performance polymer solar cells. Advanced Materials 22: 5240–5244.CrossRefGoogle Scholar
  26. Wang, E.G., L.T. Hou, Z.Q. Wang, S. Hellström, W. Mammo, F.L. Zhang, O. Inganäs, and M.R. Andersson. 2010b. Small band gap polymers synthesized via a modified nitration of 4,7-dibromo-2,1,3-benzothiadiazole. Organic Letters 12: 4470–4473.CrossRefGoogle Scholar
  27. Wang, E.G., Z.F. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O. Inganas, F.L. Zhang, and M.R. Andersson. 2011. An easily accessible isoindigo-based polymer for high-performance polymer solar cells. Journal of the American Chemical Society 133: 14244–14247.CrossRefGoogle Scholar
  28. Yu, G., J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger. 1995. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270: 1789–1791.CrossRefGoogle Scholar
  29. Zhou, Y., K. Tvingstedt, F.L. Zhang, C.X. Du, W.X. Ni, M.R. Andersson, and O. Inganäs. 2009. Observation of a charge transfer state in low-bandgap polymer/fullerene blend systems by photoluminescence and electroluminescence studies. Advanced Functional Materials 19: 3293–3299.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Olle Inganäs
    • 1
  • Fengling Zhang
    • 1
  • Mats R. Andersson
    • 2
  1. 1.Biomolecular and Organic Electronics, IFM, and Center of Organic Electronics, Linköping UniversityLinköpingSweden
  2. 2.Surface Chemistry/Polymer TechnologyChalmers University of TechnologyGöteborgSweden

Personalised recommendations