Advertisement

AMBIO

, Volume 41, Supplement 2, pp 119–124 | Cite as

Position-Controlled III–V Compound Semiconductor Nanowire Solar Cells by Selective-Area Metal–Organic Vapor Phase Epitaxy

  • Takashi Fukui
  • Masatoshi Yoshimura
  • Eiji Nakai
  • Katsuhiro Tomioka
Article

Abstract

We demonstrate position-controlled III–V semiconductor nanowires (NWs) by using selective-area metal–organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core–shell NW solar cells. We form a ‘flexible NW array’ without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

Keywords

Solar cell InP Semiconductor nanowire Photovoltaic 

Notes

Acknowledgments

The authors would like to thank Profs. Junichi Motohisa, Shinjiro Hara, and Kenji Hiruma, as well as Mr. Hajime Goto, for their fruitful discussions.

References

  1. Björk, M.T., B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, et al. 2002. One-dimensional heterostructures in semiconductor nanowhiskers. Applied Physics Letters 80: 1058–1060.CrossRefGoogle Scholar
  2. Borgström, M.T., J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M.H. Magnusson, K. Deppert, et al. 2011. Nanowires with promise for photovoltaics. IEEE Journal of Selected Topics in Quantum Electronics 17: 1051–1061.CrossRefGoogle Scholar
  3. Bremner, S.P., M.Y. Levy, and C. Honsberg. 2007. Analysis of tandem solar cell efficiencies under AM1.5G Spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications 16: 225–233.CrossRefGoogle Scholar
  4. Colombo, C., M. Heib, M. Grätzel, and A.F.I. Morral. 2009. Gallium arsenide p–i–n radial structures for photovoltaic applications. Applied Physics Letters 94: 173108-1-3.CrossRefGoogle Scholar
  5. Czaban, J.A., D.A. Thompson, and R.R. LaPierre. 2009. GaAs core–shell nanowires for photovoltaic applications. Nanoletters 9: 148–154.CrossRefGoogle Scholar
  6. Fukui, T., S. Ando, and Y.K. Fukai. 1990. Lateral quantum well wires fabricated by selective metalorganic chemical vapor deposition. Applied Physics Letters 57: 1209–1211.CrossRefGoogle Scholar
  7. Glas, F. 2006. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Physical Review B 74: 121302 (4 pp).Google Scholar
  8. Goto, H., K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui. 2009. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Applied Physics Express 2: 035004 (3 pp).Google Scholar
  9. Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop. 2012. Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications 20: 12–20.CrossRefGoogle Scholar
  10. Gudiksen, M.S., L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber. 2002. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415: 617–620.CrossRefGoogle Scholar
  11. Hiruma, K., T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G.P. Morgan. 1991. Quantum size microcrystals grown using organometallic vapor phase epitaxy. Applied Physics Letters 59: 431–433.CrossRefGoogle Scholar
  12. Hiruma, K., M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi. 1995. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. Journal of Applied Physics 77: 447–462.CrossRefGoogle Scholar
  13. Hu, L., and G. Chen. 2007. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Letters 7: 3249–3252.CrossRefGoogle Scholar
  14. Kelzenberg, M.D., D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater. 2008. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Letters 8: 710–714.CrossRefGoogle Scholar
  15. Mohan, P., J. Motohisa, and T. Fukui. 2005. Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16: 2903–2907.CrossRefGoogle Scholar
  16. Morral, A.F.I., C. Colombo, G. Abstreiter, J. Arbiol, and J.R. Morante. 2008. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Applied Physics Letters 92: 063112 (3 pp).Google Scholar
  17. Noborisaka, J., J. Motohisa, and T. Fukui. 2005. Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Applied Physics Letters 86: 213102 (3 pp).Google Scholar
  18. Sugo, M., A. Yamamoto, M. Yamaguchi, and C. Uemura. 1985. High-efficiency InP solar cells with n+–p–p+ structure grown by metal–organic chemical vapor deposition. Japanese Journal of Applied Physics 24: 1243–1244.CrossRefGoogle Scholar
  19. Tian, B., X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber. 2007. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449: 885–890.CrossRefGoogle Scholar
  20. Wagner, R.S., and W.C. Ellis. 1964. Vapor–liquid–solid mechanism of single crystal growth. Applied Physics Letters 4: 89–90.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Takashi Fukui
    • 1
  • Masatoshi Yoshimura
    • 1
  • Eiji Nakai
    • 1
  • Katsuhiro Tomioka
    • 1
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations