, Volume 41, Issue 5, pp 456–466 | Cite as

Growth and Histopathological Effects of Chronic Exposition of Marine Pejerrey Odontesthes argentinensis Larvae to Petroleum Water-Soluble Fraction (WSF)

  • Emeline Pereira Gusmão
  • Ricardo Vieira Rodrigues
  • Cauê Bonucci Moreira
  • Luis Alberto Romano
  • Luís André Sampaio
  • Kleber Campos Miranda-Filho


The water-soluble fraction (WSF) of petroleum contains a mixture of polycyclic aromatic hydrocarbons, volatile hydrocarbons, phenols, and heterocyclic compounds, considered deleterious to aquatic biota. Marine “pejerrey” Odontesthes argentinensis (Teleostei: Atherinopsidae) has a great commercial importance in local fisheries and a high potential for aquaculture. The aim of this study was to evaluate the histopathological effects in “pejerrey” larvae exposed to different concentrations of petroleum WSF. The chronic toxicity test was conducted with newly hatched larvae exposed for 21 days to sublethal concentrations of WSF (2.5, 5, 10, and 20 % of WSF), plus one control. Survival and growth were significantly lower in the highest concentration. Several histopathological changes were found in the gills (e.g., hyperplasia, aneurisms, edema, and necrosis), kidney (e.g., nuclear alterations, decrease in the hematopoietic cells), and liver (e.g., hypertrophy, karyorrhexis, and karyopyknosis). An index of branchial lesion was proposed to standardize gill lesions to different pollutants.


Toxicology Petroleum WSF “Pejerrey” Histopathology Lesion index 



The authors would like to gratefully acknowledge the Brazilian National Agency of Petroleum (ANP) for supporting the students E.P. Gusmão, R.V. Rodrigues, and C.B. Moreira. K.C. Miranda-Filho thanks CNPq (481613/2007-2) and CAPES for their support. L.A. Sampaio is a research fellow of Brazilian CNPq (308013/2009-3).


  1. Akaishi, F.M., H.C.S. Assis, S.C.G. Jakobi, D.R. Eiras-Stofella, S.D. St-Jean, S.C. Courtenay, E.F. Lima, A.L.R. Wagener, et al. 2004. Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude oil. Archives of Environmental Contamination and Toxicology 46: 244–253.Google Scholar
  2. Al-Yakoob, S.N., D. Gundersen, and L. Curtis. 1996. Effects of the water-soluble fraction of partially combusted crude oil from Kuwait’s oil fires (from desert storm) on survival and growth of the marine fish Menidia beryllina. Ecotoxicology and Environmental Safety 35: 142–149.CrossRefGoogle Scholar
  3. Anderson, J.W., J.M. Neef, B.A. Cox, H.E. Tatem, and G.M. Hightower. 1974. Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology 27: 75–88.CrossRefGoogle Scholar
  4. Barron, M.G., T. Podrabsky, S. Ogle, and R.W. Ricker. 1999. Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms? Aquatic Toxicology 46: 253–268.CrossRefGoogle Scholar
  5. Bernet, D., H. Schmidt, W. Meier, P. Burkhardt-Holm, and T. Wahli. 1999. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases 22: 25–34.CrossRefGoogle Scholar
  6. Brand, D.G., R. Fink, W. Bengeyfield, I.K. Birtwell, and C.D. Mcallister. 2001. Salt water-acclimated pink salmon fry (Oncorhynchus gorbuscha) develop stress-related visceral lesions after 10-day exposure to sublethal concentrations of the water-soluble fraction of North Slope crude oil. Toxicologic Pathology 29(5): 574–584.CrossRefGoogle Scholar
  7. Carls, M.G., and S.D. Rice. 1990. Abnormal development and growth reductions of pollock Theragra chalcogramma embryos exposed to water-soluble fractions of oil. Fisheries Bulletin 88(1): 29–37.Google Scholar
  8. Clark, R.B. 2001. Marine pollution, 248. Oxford: Oxford University Press.Google Scholar
  9. Di Giulio, R.T., and D.E. Hinton. 2008. Toxicology of fishes, 1096. Durham: CRC Press.CrossRefGoogle Scholar
  10. Duarte, R.M., R.T. Honda, and A.L. Val. 2010. Acute effects of chemically dispersed crude oil regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquatic Toxicology 97: 134–141.CrossRefGoogle Scholar
  11. Hamilton, M.A., R.C. Russo, and R.V. Thurston. 1977. Trimmed Spearman–Karber Method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology 11: 714–719.CrossRefGoogle Scholar
  12. Hibiya, T. 1982. An atlas of fish histology—Normal and pathological features, 195. Tokyo: Kodansha Ltd.Google Scholar
  13. Hinton, D., and D. Laurén. 1990. Integrative histopathological approaches to detecting effects of environmental stressors on fishes. American Fisheries Society Symposium 8: 51–66.Google Scholar
  14. Kennish, M.J. 1997. Practical handbook of estuarine and marine pollution, 544. New Brunswick: CRC Press.Google Scholar
  15. Khan, R.A. 2003. Health of flatfish from localities in Placentia Bay, Newfoundland, contaminated with petroleum and PCBs. Archives of Environmental Contamination and Toxicology 44: 485–492.CrossRefGoogle Scholar
  16. Lockhart, W.L., D.A. Duncan, B.N. Billeck, R.A. Dannell, and M.J. Ryan. 1996. Chronic toxicity of the “water soluble fraction” of Norman Wells crude oil to juvenile fish. Spill Science and Technology Bulletin 3: 259–262.CrossRefGoogle Scholar
  17. Mallat, J. 1985. Fish gill structural changes induced by toxicants and other irritants. A statistical review. Canadian Journal of Fisheries and Aquatic Sciences 42: 630–648.CrossRefGoogle Scholar
  18. Morales-Caselles, C., N. Jiménez-Tenorio, M.L.G. Canales, C. Sarasquete, and T.A. Delvales. 2006. Ecotoxicity of sediments contaminated by the oil spill associated with the tanker “Prestige” using juveniles of the fish Sparus aurata. Archives of Environmental Contamination and Toxicology 51: 652–660.CrossRefGoogle Scholar
  19. Neff, J.M., S. Ostazeski, W. Gardiner, and I. Stejskal. 2000. Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. Environmental Toxicology and Chemistry 19: 1809–1821.CrossRefGoogle Scholar
  20. Nero, V., A. Farwell, A. Lister, G. Van Der Kraak, L.E.J. Lee, T. Van Meer, M.D. MacKinnon, and D.G. Dixon. 2006. Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Cassius auratus) exposed to oil sands process-affected water. Ecotoxicology and Environmental Safety 63: 365–377.CrossRefGoogle Scholar
  21. Ramachandran, S.D., M.J. Sweezey, P.V. Hodson, M. Boudreau, S.C. Courtenay, K. Lee, T. King, and J.A. Dixon. 2006. Influence of salinity and fish species on PAH uptake from dispersed crude oil. Marine Pollution Bulletin 52: 1182–1189.CrossRefGoogle Scholar
  22. Rodrigues, R.V., K.C. Miranda-Filho, E.P. Gusmão, C.B. Moreira, L.A. Romano, and L.A. Sampaio. 2010. Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis. Science of the Total Environment 408: 2054–2059.CrossRefGoogle Scholar
  23. Romano, L.A., and F. Cueva. 1988. Gill histological lesions related to toxic substances in Odontesthes bonariensis (Cuv. y Val., 1835) (Pisces, Atherinidae). Revista de la Asociacion de Ciencias Naturales del Litoral 19: 135–142. (In Spanish).Google Scholar
  24. Rudolph, A., R. Yanez, and L. Troncoso. 2001. Effects of exposure of Oncorhynchus mykiss to the water accommodated fraction of petroleum hydrocarbon. Bulletin of Environmental Contamination and Toxicology 66: 400–406.CrossRefGoogle Scholar
  25. Saeed, T., and M. Al-Mutairi. 2000. Comparative composition of polycyclic aromatic hydrocarbons (PAHs) in the sea water-soluble fractions of different Kuwaiti crude oil. Advances in Environmental Research 4: 141–145.CrossRefGoogle Scholar
  26. Sampaio, L.A. 2006. Production of pejerrey Odontesthes argentinensis fingerlings: A review of current techniques. Biocell 30: 121–123.Google Scholar
  27. Sampaio, L.A., and A. Minillo. 1995. Acute toxicity of ammonia to marine silverside larvae (Odontesthes argentinensis) under different temperatures. European Aquaculture Society Special Publication 24: 390–393.Google Scholar
  28. Sampaio, L.A., T.L. Pissetti, and M. Morena. 2006. Acute toxicity of nitrite in marine pejerrey Odontesthes argentinensis (Teleostei, Atherinopsidae) larvae. Ciências Rurais 36: 1008–1010. (In Portuguese).CrossRefGoogle Scholar
  29. Sarasquete, C., and M. Gutiérrez. 2005. New tetrachronic VOF stain (type iii-gs) for normal and pathological fish tissues. European Journal of Histochemistry 49: 105–114.Google Scholar
  30. Silva, A.G., and C.B.R. Martinez. 2007. Morphological changes in the kidney of a fish living in an urban stream. Environmental Toxicology and Pharmacology 23: 185–192.CrossRefGoogle Scholar
  31. Simonato, J.D., C.L.B. Guedes, and C.B.R. Martinez. 2008. Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicology and Environmental Safety 69: 112–120.CrossRefGoogle Scholar
  32. Singer, M.M., D. Aurand, G.E. Bragin, J.R. Clark, G.M. Coelho, M.L. Sowby, and R.S. Tjeerdema. 2000. Standardization of the preparation and quantification of water-accommodated fractions of petroleum for toxicity testing. Marine Pollution Bulletin 40: 1007–1016.CrossRefGoogle Scholar
  33. Sprague, J.B. 1971. Measurement of pollutant toxicity to fish. III. Sublethal effects and safe concentrations. Water Research 5: 245–266.CrossRefGoogle Scholar
  34. Stehr, C.M., M.S. Myers, L.L. Johnson, S. Spencer, and J.E. Stein. 2003. Toxicopathic liver lesions in English sole and chemical contaminant exposure in Vancouver Harbor. Canadian Marine and Environmental Research 57: 55–74.CrossRefGoogle Scholar
  35. US Environmental Protection Agency (US-EPA). 1996. Method 8015B: Nonhalogenated organics using GC/FID. Washington, DC, 28 pp.Google Scholar
  36. US Environmental Protection Agency (US-EPA). 2006. Method 8270D: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). Washington, DC, 72 pp.Google Scholar
  37. Vethaak, A.D., and P.W. Wester. 1996. Diseases of flounder Platichthys flesus in Dutch Coastal and estuarine waters with particular reference to environmental stress factors. Diseases of Aquatic Organisms 26: 99–116.CrossRefGoogle Scholar
  38. Wester, P.W., L.T.M. Van Der Ven, A.D. Vethaak, G.C.M. Grinwis, and J.G. Vos. 2002. Aquatic toxicology: Opportunities for enhancement through histopathology. Environmental Toxicology and Pharmacology 11: 289–295.CrossRefGoogle Scholar
  39. Ziolli, R.L., and W.F. Jardim. 2002. Operational problems related to the preparation of the seawater soluble fraction of crude oil. Journal of Environmental Monitoring 4: 138–141.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Emeline Pereira Gusmão
    • 1
  • Ricardo Vieira Rodrigues
    • 1
  • Cauê Bonucci Moreira
    • 1
  • Luis Alberto Romano
    • 2
  • Luís André Sampaio
    • 2
  • Kleber Campos Miranda-Filho
    • 3
  1. 1.Programa de Pós-Graduação em Aquicultura, Laboratório de Piscicultura Estuarina e MarinhaUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Laboratório de Piscicultura Estuarina e Marinha, Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Escola de Veterinária, Departamento de Zootecnia, Laboratório de AquaculturaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations