, Volume 41, Issue 5, pp 435–445 | Cite as

Using Available Information to Assess the Potential Effects of Climate Change on Vegetation in the High Arctic: North Billjefjorden, Central Spitsbergen (Svalbard)

  • Jitka Klimešová
  • Karel Prach
  • Alexandra Bernardová
Review Paper


We review the available data that can be used to assess the potential impact of climate change on vegetation, and we use central Spitsbergen, Svalbard, as a model location for the High Arctic. We used two sources of information: recent and short-term historical records, which enable assessment on scales of particular plant communities and the landscape over a period of decades, and palynological and macrofossil analyses, which enable assessment on time scales of hundreds and thousands of years and on the spatial scale of the landscape. Both of these substitutes for standardized monitoring revealed stability of vegetation, which is probably attributable to the harsh conditions and the distance of the area from sources of diaspores of potential new incomers. The only evident recent vegetation changes related to climate change are associated with succession after glacial retreats. By establishing a network of permanent plots, researchers will be able to monitor immigration of new species from diversity ‘hot spots’ and from an abandoned settlement nearby. This will greatly enhance our ability to understand the effects of climate change on vegetation in the High Arctic.


Allien plants Arctic Biodiversity hot-spots Climate change Macroremnants Plants 



This study was supported by grants LA 341 and LM 20110009 Czech Polar of the Ministry of Education of the Czech Republic, by the Institute of Botany AS CR (0Z60050516), by the Faculty of Science, University of South Bohemia (MSM6007665801 & GAJU 138/2010/P) and by EEA Norway funds. AB is very grateful to Hilary H. Birks for help with Salix hybrid identification, to Grzegorz Rachlewicz for providing the map. We thank to referees for their comments, and Jan W. Jongepier and Bruce Jafee for English revision.


  1. Acock, A.M. 1940. Vegetation of a calcareous inner fjord region in Spitsbergen. Journal of Ecology 28: 81–106.CrossRefGoogle Scholar
  2. Birks, H.H. 1991. Holocene vegetational history and climatic change in west Spitsbergen—plant macrofossils from Skardtjørna, an Arctic lake. Holocene 1: 209–215.CrossRefGoogle Scholar
  3. Callaghan, T.V., L.O. Bjorn, Y. Chernov, T. Chapin, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, D. Jolly, et al. 2004. Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio 33: 404–417.Google Scholar
  4. Callaghan, T.V., C.E. Tweedie, J. Ǻkerman, C. Andrews, J. Bergstedt, M.G. Butler, T.R. Christensen, D. Cooley, U. Dahlberg, et al. 2011. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year—Back to the Future Project (IPY-BFP). Ambio 40: 705–716.CrossRefGoogle Scholar
  5. Daniëls, F.J.A., J.G. de Molenaar, M. Chytrý, and L. Tichý. 2011. Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Journal of Vegetation Science 14: 230–241.CrossRefGoogle Scholar
  6. Dobbs, C.G. 1939. The vegetation of Cape Napier, Spitsbergen. Journal of Ecology 27: 126–148.CrossRefGoogle Scholar
  7. Elvebakk, A. 2005a. A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia 35: 951–967.CrossRefGoogle Scholar
  8. Elvebakk, A. 2005b. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia 35: 1067–1079.CrossRefGoogle Scholar
  9. Elverhoi, A., J. I. Svendsen, A. Solheim, E.S. Andersen, J. Milliman, J. Mangerud, and R.L. Hooke. 1995. Late quaternary sediment yield from the High Arctic Svalbard Area. Journal of Geology 103: 1–17.CrossRefGoogle Scholar
  10. Essl, F., S. Dullinger, W. Rabitsch, P.E. Hulme, K. Hulber, V. Jarošík, I. Kleinbauer, F. Krausmann, I. Kühn, W. Nentwig, M. Vila, P. Genovesi, F. Gherardi, M. L. Desprez-Loustau, A. Roques, P. Pyšek. 2011. Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America 108: 203–207.Google Scholar
  11. Hall, C.M., M. James, and S. Wilson. 2010, Biodiversity, biosecurity, and cruising in the Arctic and sub-Arctic. Journal of Heritage Tourism 5: 351–364.CrossRefGoogle Scholar
  12. Hellmann, J.J., J.E. Byers, B.G. Bierwagen, and J.S. Dukes. 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22: 534–543.CrossRefGoogle Scholar
  13. Hill, G.B., and G.H.R. Henry. 2011. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology 17: 276–287.CrossRefGoogle Scholar
  14. Hyvarinen, H. 1970. Flandrian pollen diagrams from Svalbard. Geografiska Annaler 52A: 213–222.CrossRefGoogle Scholar
  15. Jónsdóttir, I. S. 2005. Terrestrial ecosystems on Svalbard: Heterogeneity, complexity and fragility from an Arctic island perspective. Biology and Environment. Proceedings of the Royal Irish Academy. 105B: 155–165.CrossRefGoogle Scholar
  16. Körner, Ch. 2003. Alpine plant life. A functional plant ecology of high mountain ecosystems. Berlin: Springer.Google Scholar
  17. Liška, J., and Z. Soldán. 2004. Alien vascular plants recorded from the Barentsburg and Pyramiden settlements, Svalbard. Preslia 76: 279–290.Google Scholar
  18. Matthews, J.A. 2008. The ecology of recently-deglaciated terrain. Cambridge: Cambridge University Press.Google Scholar
  19. Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asrar, and R.R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698–702.CrossRefGoogle Scholar
  20. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37: 637–669.CrossRefGoogle Scholar
  21. Prach, K., J. Košnar, J. Klimešová, and M. Hais. 2010. High Arctic vegetation after 70 years: a repeated analysis from Svalbard. Polar Biology 33: 635–639.CrossRefGoogle Scholar
  22. Prach, K., and L.R. Walker. 2011. Four opportunities for studies of ecological succession. Trends in Ecology and Evolution. 26: 119–123.CrossRefGoogle Scholar
  23. Rachlewicz, G., W. Szcucinski, and M. Ewertowski. 2007. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research 28: 159–186.Google Scholar
  24. Rønning, O.I. 1996. The flora of Svalbard. Oslo: Norsk Polarinstitut.Google Scholar
  25. Rozema, J., P. Boelen, M. Doorenbosch, S. Bohncke, P. Blokker, C. Boekel, R.A. Broekman, and M. Konert. 2006. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecology 182: 155–173.Google Scholar
  26. Rozema, J., S. Weijers, R. Broekman, P. Blokker, B. Buizer, C. Werleman, H. El Yaqine, H. Hoogedoorn, et al. 2009. Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Global Change Biology 15: 1703–1715.CrossRefGoogle Scholar
  27. Sturm, M., C. Racine, and K. Tape. 2001. Climate change—Increasing shrub abundance in the Arctic. Nature 411: 546–547.CrossRefGoogle Scholar
  28. Summerhayes, V.S., and C.S. Elton. 1923. Contributions to the ecology of Spitsbergen and Bear Island. Journal of Ecology 11: 214–286.CrossRefGoogle Scholar
  29. Svendsen, J.I., and J. Mangerud. 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 7: 45–57.CrossRefGoogle Scholar
  30. Szczucinski, W., M. Zajaczkowski, and J. Scholten. 2009. Sediment accumulation rates in subpolar fjords—Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuarine Coastal and Shelf Science 85: 345-356.CrossRefGoogle Scholar
  31. Thuiller, W., C. Albert, M.B. Araujo, P.M. Berry, M. Cabeza, A. Guisan, T. Hickler, G.F. Midgely, et al. 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology Evolution and Systematics 9: 137–152.CrossRefGoogle Scholar
  32. Van der Knaap, W.O. 1987. Five short diagrams of soils from Jan Mayen, Norway: A testimony of a dynamic landscape. Polar Research 5: 193–206.CrossRefGoogle Scholar
  33. Van der Knaap, W.O. 1988. Palynology of two 4500 year old skua-mounds of the Arctic Skua (Stercorarius parasiticus (L.)) in Svalbard. Polar Research 6: 43–57.CrossRefGoogle Scholar
  34. Van der Knaap, W.O. 1990. Relations between present-day pollen deposition and vegetation in Spitsbergen. Grana 29: 63–78.CrossRefGoogle Scholar
  35. Van der Knaap, W.O. 1991. Palynology of peat sections from Spitsbergen covering the last few centuries. Nordic Journal of Botany 11: 213–223.CrossRefGoogle Scholar
  36. Walker, L.R., R. del Moral 2003. Primary succession and ecosystem rehabilitation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Walton, J. 1922. A Spitsbergen salt marsh with observations on the ecological phenomena attendant on the emergence of land from the sea. Journal of Ecology 10: 109–121.CrossRefGoogle Scholar
  38. Wichmann, M.C., M.J. Alexander, M.B. Soons, S. Galsworthy, L. Dunne, R. Gould, C. Fairfax, M. Niggemann, et al. 2009. Human-mediated dispersal of seeds over long distances. Proceedings of the Royal Society B-Biological Sciences 276: 523–532.CrossRefGoogle Scholar
  39. Wilson, S.D., and C. Nilsson. 2009. Arctic alpine vegetation change over 20 years. Global Change Biology 15: 1676–1684.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Jitka Klimešová
    • 1
    • 2
  • Karel Prach
    • 1
    • 2
  • Alexandra Bernardová
    • 2
  1. 1.Section of Plant EcologyInstitute of Botany ASCRTřeboňCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations