, Volume 40, Issue 8, pp 836–856 | Cite as

Recovery of Soil Water, Groundwater, and Streamwater From Acidification at the Swedish Integrated Monitoring Catchments

  • Stefan Löfgren
  • Mats Aastrup
  • Lage Bringmark
  • Hans Hultberg
  • Lotta Lewin-Pihlblad
  • Lars Lundin
  • Gunilla Pihl Karlsson
  • Bo Thunholm


Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996–2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.


Recovery from acidification Sulfur deposition Soil water Groundwater Streamwater Hydrological compartments 



The Swedish Integrated Monitoring program has been funded by the Swedish Environmental Protection Agency. This study would not have been possible without the efforts of all the people who collected and analyzed samples from the IM sites, and those who maintained the data archive. The authors thank Associate Professor Stephan Köhler, SLU, and Therese Zetterberg, IVL for the total deposition data and, together with Associate Professor Martyn Futter, SLU, for valuable scientific discussions during the preparation of this paper. The authors also thank Ola Langvall, SLU, and Ivan Clegg, SLU for preparing the catchment maps.


  1. Ågren, A., I. Buffam, K. Bishop, and H. Laudon. 2010. Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. Canadian Journal of Fisheries and Aquatic Sciences 67: 1116–1125. doi: 10.1139/f10-052.CrossRefGoogle Scholar
  2. Bertills, U., J. Fölster, and H. Lager. 2007. Only natural acidificationin-depth assessment of the environmental objective. Swedish Environmental Protection Agency. Report 5766, Stockholm, Sweden (In Swedish, English summary).Google Scholar
  3. Bishop, K.H., H. Laudon, and S. Kohler. 2000. Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified. Water Resources Research 36: 1873–1884.CrossRefGoogle Scholar
  4. Borken, W., B. Ahrens, C. Schulz, and L. Zimmermann. 2011. Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils. Global Change Biology 17: 2428–2443. doi: 10.1111/j.1365-2486.2010.02390.x.CrossRefGoogle Scholar
  5. Clark, J.M., S.H. Bottrell, C.D. Evans, D.T. Monteith, R. Bartlett, R. Rose, R.J. Newton, and P.J. Chapman. 2010. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Science of the Total Environment 408: 2768–2775.CrossRefGoogle Scholar
  6. Driscoll, C.T. 1984. A procedure for the fractionation of aqueous aluminum in dilute acidic waters. International Journal of Environmental Analytical Chemistry 16: 267–283.CrossRefGoogle Scholar
  7. Erlandsson, M., I. Buffam, J. Fölster, H. Laudon, J. Temnerud, G.A. Weyhenmeyer, and K. Bishop. 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology 14: 1191–1198. doi: 10.1111/J.1365-2486.2008.01551.X.CrossRefGoogle Scholar
  8. Evans, C.D., J.M. Cullen, C. Alewell, J. Kopacek, A. Marchetto, F. Moldan, A. Prechtel, M. Rogora, et al. 2001. Recovery from acidification in European surface waters. Hydrology and Earth System Sciences 5: 283–297.CrossRefGoogle Scholar
  9. Evans, C.D., D.T. Monteith, and D.M. Cooper. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution 137: 55–71. doi: 10.1016/J.Envpol.2004.12.031.CrossRefGoogle Scholar
  10. Fölster, J., K. Bishop, P. Kram, H. Kvarnäs, and A. Wilander. 2003a. Time series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5). The Science of the Total Environment 310: 113–120.CrossRefGoogle Scholar
  11. Fölster, J., L. Bringmark, and L. Lundin. 2003b. Temporal and spatial variations in soilwater chemistry at three acid forest sites. Water, Air, and Soil pollution 146: 171–195.CrossRefGoogle Scholar
  12. Futter, M.N., S. Löfgren, S.J. Köhler, L. Lundin, F. Moldan, and L. Bringmark. 2011. Simulating dissolved organic carbon dynamics at the Swedish integrated monitoring sites with INCA-C. AMBIO. doi: 10.1007/s13280-011-203-z
  13. Giesler, R., H. Ilvesniemi, L. Nyberg, P. van Hees, M. Starr, K. Bishop, T. Kareinen, and U.S. Lundstrom. 2000. Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94: 249–263.CrossRefGoogle Scholar
  14. Giesler, R., F. Moldan, U. Lundstrom, and H. Hultberg. 1996. Reversing acidification in a forested catchment in southwestern Sweden: Effects on soil solution chemistry. Journal of Environmental Quality 25: 110–119.CrossRefGoogle Scholar
  15. Giesler, R., C.-M. Mörth, E. Mellqvist, and P. Torssander. 2005. The Humus Layer Determines SO4 2− Isotope Values in the Mineral Soil. Biogeochemistry 74: 3–20.CrossRefGoogle Scholar
  16. Hindar, A. 2005. Whole-catchment application of dolomite to mitigate episodic acidification of streams induced by sea-salt deposition. Science of the Total Environment 343: 35–49. doi: 10.1016/j.scitotnev.2004.09.040.CrossRefGoogle Scholar
  17. Hirsch, R.M., and J.R. Slack. 1984. A Nonparametric Trend Test for Seasonal Data with Serial Dependence. Water Resources Research 20: 727–732.CrossRefGoogle Scholar
  18. Hruska, J., S. Kohler, H. Laudon, and K. Bishop. 2003. Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science and Technology 37: 1726–1730. doi: 10.1021/es0201552.CrossRefGoogle Scholar
  19. Hruska, J., P. Kram, W.H. Mcdowell, and F. Oulehle. 2009. Increased dissolved organic carbon (DOC) in Central European Streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science and Technology 43: 4320–4326. doi: 10.1021/Es803645w.CrossRefGoogle Scholar
  20. Internet. 2003. Manual for integrated monitoring. Accessed 24 May 2011.
  21. Karltun, E., D.C. Bain, J.P. Gustafsson, H. Mannerkoski, E. Murad, U. Wagner, A.R. Fraser, W.J. McHardy, et al. 2000. Surface reactivity of poorly-ordered minerals in podzol B horizons. Geoderma 94: 265–288.CrossRefGoogle Scholar
  22. Köhler, S.J., T. Zetterberg, M.N. Futter, J. Fölster, and S. Löfgren. 2011. Assessment of uncertainty in long-term mass balances for acidification assessments—a MAGIC model excercise. AMBIO. doi: 10.1007/s13280-0110208-7
  23. Laudon, H., O. Westling, A. Bergquist, and K. Bishop. 2004. Episodic acidification in northern Sweden: a regional assessment of the anthropogenic component. Journal of Hydrology 297: 162–173. doi: 10.1016/j.jhydrol.2004.04.013.CrossRefGoogle Scholar
  24. Lawrence, G.B., C.T. Driscoll, and R.D. Fuller. 1988. Hydrologic control of aluminum chemistry in an acidic headwater stream. Water Resources Research 24: 659–669.CrossRefGoogle Scholar
  25. Lawrence, G.B., J.W. Sutherland, C.W. Boylen, S.W. Nierzwicki-Bauer, B. Momen, B.P. Baldigo, and H.A. Simonin. 2007. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids. Environmental Sciences and Technology 41: 93–98.CrossRefGoogle Scholar
  26. Löfgren, S. 2001. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water, Air, and Soil pollution 130: 863–868. doi: 10.1023/a:1013895215558.CrossRefGoogle Scholar
  27. Löfgren, S., L. Bringmark, M. Aastrup, H. Hultberg, K. Kindbom, and H. Kvarnäs. 2001. Sulphur balances and dynamics in three forested catchments in Sweden. Water, Air, and Soil pollution 130: 631–636.CrossRefGoogle Scholar
  28. Löfgren, S., and N. Cory. 2010. Groundwater Al dynamics in boreal hillslopes at three integrated monitoring sites along a sulphur deposition gradient in Sweden. Journal of Hydrology 380: 289–297. doi: 10.1016/j.jhydrol.2009.11.004.CrossRefGoogle Scholar
  29. Löfgren, S., N. Cory, and T. Zetterberg. 2010a. Aluminium concentrations in Swedish forest streams and co-variations with catchment characteristics. Environmental Monitoring and Assessment 166: 609–624. doi: 10.1007/s10661-009-1027-1.CrossRefGoogle Scholar
  30. Löfgren, S., J.P. Gustafsson, and L. Bringmark. 2010b. Decreasing DOC trends in soil solution along the hill slopes at two IM sites in southern Sweden—geochemical modeling of organic matter solubility during acidification recovery. Science of the Total Environment 409: 201–210. doi: 10.1016/j.scitotenv.2010.09.023.CrossRefGoogle Scholar
  31. Löfgren, S., and T. Zetterberg. 2011. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987–2008. Science of the Total Environment 409: 1916–1926. doi: 10.1016/j.scitotenv.2011.02.017.CrossRefGoogle Scholar
  32. Loftis, J.C., C.H. Taylor, and P.L. Chapman. 1991. Multivariate tests for trend in water-quality. Water Resources Research 27: 1419–1429.CrossRefGoogle Scholar
  33. Monteith, D.T., J.L. Stoddard, C.D. Evans, H.A. de Wit, M. Forsius, T. Hogasen, A. Wilander, B.L. Skjelkvale, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537-U9. doi: 10.1038/Nature06316.
  34. Mörth, C.-M., P. Torssander, M. Kusakabe, and H. Hultberg. 1999. Sulfur isotope values in a forested catchment over four years: evidence for oxidation and reduction processes. Biogeochemistry 44: 51–71.Google Scholar
  35. Pellerin, B.A., I.J. Fernandez, S.A. Norton, and J.S. Kahl. 2002. Soil aluminum distribution in the near-stream zone at the Bear Brook Watershed in Maine. Water, Air, and Soil pollution 134: 189–204.CrossRefGoogle Scholar
  36. Raab, B., and H. Vedin. 1995. National Atlas of Sweden—climate, lakes and rivers. 176 pp. Gävle: Kartförlaget.Google Scholar
  37. Reuss, J.O., and D.W. Johnson. 1986. Acid deposition and acidification of soils and waters. Ecological studies, vol. 59, 119. New York: Springer-Verlag.CrossRefGoogle Scholar
  38. Sarkkola, S., H. Koivusalo, A. Lauren, P. Kortelainen, T. Mattsson, M. Palviainen, S. Piirainen, M. Starr, et al. 2009. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment 408: 92–101. doi: 10.1016/J.Scitotenv.2009.09.008.CrossRefGoogle Scholar
  39. Skjelkvåle, B.L., J.L. Stoddard, D.S. Jeffries, K. Torseth, T. Hogasen, J. Bowman, J. Mannio, D.T. Monteith, et al. 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution 137: 165–176. doi: 10.1016/J.Envpol.2004.12.023.CrossRefGoogle Scholar
  40. Stoddard, J.L., D.S. Jeffries, A. Lukewille, T.A. Clair, P.J. Dillon, C.T. Driscoll, M. Forsius, M. Johannessen, et al. 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575–578.CrossRefGoogle Scholar
  41. Tipping, E., and C. Woof. 1990. Humic Substances in Acid Organic Soils - Modeling Their Release to the Soil Solution in Terms of Humic Charge. Journal of Soil Science 41: 573–586.CrossRefGoogle Scholar
  42. Van Breemen, N., C.T. Driscoll, and J. Mulder. 1984. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307: 599–604.CrossRefGoogle Scholar
  43. Vanguelova, E.I., S. Benham, R. Pitman, A.J. Moffat, M. Broadmeadow, T. Nisbet, D. Durrant, N. Barsoum, et al. 2010. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery. Environmental Pollution 158: 1857–1869.CrossRefGoogle Scholar
  44. Westling, O., and G. Lövblad. 2000. Deposition trends in Sweden. In The environmental recovery from acidification, eds. P. Warfvinge, U. Bertills, Swedish Environmental Protection Agency, Report 5028, Stockholm, Sweden.Google Scholar
  45. Winterdahl, M., J. Temnerud, M.N. Futter, S. Löfgren, and K. Bishop. 2011. Riparian zone influence on stream water dissolved organic carbon concentrations at the Swedish Integrated Monitoring sites. AMBIO. doi: 10.1007/s13280-011-199-4
  46. Wu, Y.J., N. Clarke, and J. Mulder. 2010. Dissolved Organic Carbon Concentrations in Throughfall and Soil Waters at Level II Monitoring Plots in Norway: Short- and Long-Term Variations. Water, Air, and Soil pollution 205: 273–288. doi: 10.1007/S11270-009-0073-1.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Stefan Löfgren
    • 1
  • Mats Aastrup
    • 2
  • Lage Bringmark
    • 1
  • Hans Hultberg
    • 3
  • Lotta Lewin-Pihlblad
    • 2
  • Lars Lundin
    • 1
  • Gunilla Pihl Karlsson
    • 3
  • Bo Thunholm
    • 2
  1. 1.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences, SLUUppsalaSweden
  2. 2.Swedish Geological Survey, SGUUppsalaSweden
  3. 3.IVL Swedish Environmental Research Institute LtdGothenburgSweden

Personalised recommendations