, Volume 41, Issue 2, pp 138–150 | Cite as

The Use of Bathymetric Data in Society and Science: A Review from the Baltic Sea

  • Benjamin Hell
  • Barry Broman
  • Lars Jakobsson
  • Martin Jakobsson
  • Åke Magnusson
  • Patrik Wiberg
Review Paper


Bathymetry, the underwater topography, is a fundamental property of oceans, seas, and lakes. As such it is important for a wide range of applications, like physical oceanography, marine geology, geophysics and biology or the administration of marine resources. The exact requirements users may have regarding bathymetric data are, however, unclear. Here, the results of a questionnaire survey and a literature review are presented, concerning the use of Baltic Sea bathymetric data in research and for societal needs. It is demonstrated that there is a great need for detailed bathymetric data. Despite the abundance of high-quality bathymetric data that are produced for safety of navigation purposes, the digital bathymetric models publicly available to date cannot satisfy this need. Our study shows that DBMs based on data collected for safety of navigation could substantially improve the base data for administrative decision making as well as the possibilities for marine research in the Baltic Sea.


Bathymetry Coastal environment Mapping Geospatial data Baltic Sea 



B.H. was supported by the Swedish Maritime Administration and Stockholm University to carry out the work in this article. Comments by Jan Backman have significantly improved this manuscript. The authors are grateful for the valuable comments by two anonymous reviewers.


  1. Annoni, A., C. Luzet, E. Gubler, and J. Ihde. 2003. Map projections for Europe. Tech. Rep. Institute for Environment and Sustainability. Accessed 16 Feb 2011.
  2. Babenerd, B., and S.A. Gerlach. 1987. Bathymetry and sediments of Kieler Bucht. In Coastal and estuarine studies, ed. J. Rumohr, E. Walger, and B. Zeitzschel, vol. 13, 15–31. New York: Springer.Google Scholar
  3. Becker, J.J., D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, et al. 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32: 355–371. doi: 10.1080/01490410903297766.CrossRefGoogle Scholar
  4. Bendtsen, J., K.E. Gustafsson, J. Söderkvist, and J.L.S. Hansen. 2009. Ventilation of bottom water in the North Sea–Baltic Sea transition zone. Journal of Marine Systems 75: 138–149. doi: 10.1016/j.jmarsys.2008.08.006.CrossRefGoogle Scholar
  5. Broman, B., B. Hell, T. Holmquist, L. Jakobsson, M. Jakobsson, R. Lindgren, Å. Magnusson, and P. Wiberg. 2011. A harmonized depth model of the Baltic Sea. Analysis of demands and required specifications. Tech. Rep. Swedish Maritime Administration and Stockholm University. Accessed 29 June 2011.
  6. Bundesamt für Seeschifffahrt und Hydrographie. 2007. Bathymetric grid German Baltic Sea EEZ (resolution 6sec × 10sec)WMS. Web Map Service. Accessed 4 June 2010.
  7. Döös, K., H.E.M. Meier, and R. Döscher. 2004. The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33: 261–266.Google Scholar
  8. European Parliament and Council. 2008. Marine strategy framework directive. Directive 2008/56/EC. Accessed 12 Mar 2011.
  9. Gelumbauskaitė, L.-Ž., ed. 1998. Bathymetric Map of the Central Baltic Sea. Scale 1:500 000. LGT Series of Marine Geological Maps/SGU series Ba no. 54. Vilnius/Uppsala: Geological Survey of Lithuania/Geological Survey of Sweden. ISBN 9986-615-10-0.Google Scholar
  10. Gesch, D., and R. Wilson. 2002. Development of a seamless multisource topographic/bathymetric elevation model of Tampa Bay. Marine Technology Society Journal 35(4): 58–64. doi: 10.4031/002533201788058062.CrossRefGoogle Scholar
  11. Government of Sweden. 2009. An integrative Swedish maritime policy. Regeringens proposition 2008/09:170. Accessed 16 Feb 2011.
  12. Haigang, S., H. Li, Z. Haitao, and Z. Yongli. 2005. A fast algorithm of cartographic sounding selection. Geo-Spatial Information Science 8: 262–268. doi: 10.1007/BF02838660.CrossRefGoogle Scholar
  13. Hall, J. 2006. GEBCO Centennial Special Issue—Charting the secret world of the ocean floor: The GEBCO Project 1903–2003. Marine Geophysical Researches 27: 1–5. doi: 10.1007/s11001-006-8181-4.CrossRefGoogle Scholar
  14. Harff, J., and M. Meyer. 2001. Modellierung der Küstenentwicklung in der südwestlichen Ostsee. Zwischenbericht Projekt Ha1834/5-1. Institut für Ostseeforschung Warnemünde/Institute für Geologische Wissenschaften und Geographie, Universität Greifswald (in German).Google Scholar
  15. HELCOM Extraordinary Ministerial Meeting. 2007. HELCOM Baltic Sea Action Plan. Adopted on 15 November 2007 in Krakow, Poland. Accessed 12 Mar 2011.
  16. International Hydrographic Organization. 2008. IHO standards for hydrographic surveys. Special Publication No 44, 5th edn. Imp. Monégasque, Monte Carlo: International Hydrographic Organization. Accessed 16 Feb 2011.
  17. Jakobsson, M., S. Björck, G. Alm, T. Andrén, G. Lindeberg, and N.-O. Svensson. 2007. Reconstructing the Younger Dryas ice dammed lake in the Baltic Basin: Bathymetry, area and volume. Global and Planetary Change 57: 355–370. doi: 10.1016/j.gloplacha.2007.01.006.CrossRefGoogle Scholar
  18. Milbradt, P., and R. Lehfeldt. 2002. Littoral processes at micro-tidal coasts of the Southern Baltic Sea. In Fifth international conference on hydro-science and engineering, Warsaw. Accessed 16 Feb 2011.
  19. Miljödepartementet. 2008. Marine environment inquiry. Statens offentliga utredningar 2008:48. Accessed 18 Oct 2010 (in Swedish, English summary).
  20. Nielsen, K., M. Stjernholm, B.Ø. Olsen, D.-I. Müller-Wohlfeil, I.-L. Madsen, A. Kjeldgaard, G. Groom, H.S. Hansen, et al. 2000. Areal informations systemetAIS. Tech. Rep. Danmarks Miljøundersøgelser. Accessed 13 Apr 2011 (in Danish).
  21. NOAA, National Geophysical Data Center. 1988. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. Boulder, CO. Accessed 16 Feb 2011.
  22. Seifert, T., F. Tauber, and B. Kayser. 2001. A high resolution spherical grid topography of the Baltic Sea, 2nd edn. In Baltic Sea Science Congress. Poster 147, Stockholm. Accessed 16 Feb 2011.
  23. She, J., P. Berg, and J. Berg. 2007. Bathymetry impacts on water exchange modelling through the Danish Straits. Journal of Marine Systems 65: 450–459. doi: 10.1016/j.jmarsys.2006.01.017.CrossRefGoogle Scholar
  24. Smith, W.H.F., and D.T. Sandwell. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277: 1956–1962.CrossRefGoogle Scholar
  25. Smith, W.H.F., and P. Wessel. 1990. Gridding with continuous curvature splines in tension. Geophysics 55: 293–305.CrossRefGoogle Scholar
  26. U. S. Department of Commerce, National Oceanic and Atmospheric Administration, and National Geophysical Data Center. 2006. 2-minute gridded global relief data (ETOPO2v2). Boulder, CO. Accessed 16 Feb 2011.
  27. Weiergang, J. 1995. DYNOCS inception report. Tech. Rep. Danish Hydraulic Institute.Google Scholar
  28. Wieser, M. 1987. The global elevation model TUG 87 (orig. “Das globale Höhenmodell TUG 87”). Internal Report. Institut für Theoretische Geodäsie, Abteilung für Mathematische und Datenverarbeitende Geodäsie der Technischen Universität Graz: 4 pp (in German).Google Scholar
  29. Zoraster, S., and S. Bayer. 1992. Automated cartographic sounding selection. International Hydrographic Review 69: 57–61.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Benjamin Hell
    • 1
  • Barry Broman
    • 2
  • Lars Jakobsson
    • 3
  • Martin Jakobsson
    • 1
  • Åke Magnusson
    • 3
  • Patrik Wiberg
    • 3
  1. 1.Department of Geological SciencesStockholm UniversityStockholmSweden
  2. 2.Rossby CentreSwedish Meteorological and Hydrological InstituteNorrköpingSweden
  3. 3.Swedish Maritime AdministrationNorrköpingSweden

Personalised recommendations