Skip to main content
Log in

Changes in the Chemistry of Small Irish lakes

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO4 2−) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO4 2−, non-marine SO4 2−, and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aherne, J., and C.J. Curtis. 2003. Critical loads of acidity for Irish lakes. Aquatic Sciences 65: 21–35.

    Article  CAS  Google Scholar 

  • Aherne, J., and E.P. Farrell. 2002. Deposition of sulfur, nitrogen and acidity in precipitation over Ireland: Chemistry, spatial distribution and long-term trends. Atmospheric Environment 36: 1379–1389.

    Article  CAS  Google Scholar 

  • Aherne, J., M. Kelly-Quinn, and E.P. Farrell. 2002. A survey of lakes in the Republic of Ireland: Hydrochemical characteristics and acid sensitivity. Ambio 31(6): 452–459.

    Google Scholar 

  • Almer, B., W. Dickson, C. Ekström, and E. Hornström. 1978. Sulphur pollution and the aquatic ecosystem. In Sulfur in the environment, ed. J.O. Nriagu, 271–311. New York: Wiley.

    Google Scholar 

  • Bailey, M.D., J.J. Bowman, C. O’Connell, and P.J. Flanagan. 1986. Air quality in Ireland. Dublin: An Foras Forbartha.

    Google Scholar 

  • Bashir, W., F. McGovern, M. Ryan, and L. Burke. 2008. Chemical trends in background air quality and the ionic composition of precipitation for the period 1980–2004 from samples collected at Valentia Observatory, CoKerry, Ireland. Journal of Environmental Monitoring 10: 730–738.

    Article  CAS  Google Scholar 

  • Bowman, J.J. 1991. Acid sensitive waters in Ireland: The impact of a major new sulfur emission on sensitive surface waters in an unacidified region. Dublin: Environmental Research Unit.

    Google Scholar 

  • Bowman, J.J., and M. McGettigan. 1994. Atmospheric deposition in acid sensitive areas of Ireland: the influence of wind direction and a new coal burning electricity generation station on precipitation quality. Water, Air, and Soil pollution 75: 159–175.

    Article  CAS  Google Scholar 

  • Bull, K., M. Johannson, and M. Kryzanowski. 2008. Impacts of the convention on long-range transboundary air pollution on air quality in Europe. Journal of Toxicology and Environmental Health: Part A 71(1): 51–55.

    Article  CAS  Google Scholar 

  • Butler, C.J., A. García-Suárez, and E. Pallé. 2007. Trends in cycles in long Irish Meteorological Series. Biology and Environment: Proceedings of the Royal Irish Academy 107B(3): 157–165.

    Article  Google Scholar 

  • Driscoll, C.T., K.M. Driscoll, K.M. Roy, and M.J. Mitchels. 2003. Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environmental Science and Technology 37: 2036–2042.

    Article  CAS  Google Scholar 

  • EMEP. 1996. Manual for sampling and chemical analysis. http://www.tarantula.nilu.no/projects/ccc/qa.

  • European Environmental Agency. 2009. European community emission inventory report 1990–2007 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). EEA Technical Report No 8/2009, Copenhagen. doi:10.2800/12414.

  • Evans, C.D., D.T. Monteith, and D.M. Cooper. 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution 137: 55–71.

    Article  CAS  Google Scholar 

  • Evans, C.D., D.T. Monteith, B. Reynolds, and J.M. Clark. 2008. Buffering of recovery from acidification by organic acids. Science of the Total Environment 404: 316–325.

    Article  CAS  Google Scholar 

  • Flower, R.J., B. Rippey, N.L. Rose, P. Appleby, and R.W. Battarbee. 1994. Paleolimnological evidence for the acidification and contamination of lakes by atmospheric pollution in western Ireland. Journal of Ecology 82(3): 581–596.

    Article  Google Scholar 

  • Fowler, D., R. Smith, J. Muller, J.N. Cape, M. Sutton, J.W. Erisman, and H. Fagerli. 2007. Long term trends in sulfur and nitrogen deposition in Europe and the cause of non-linearities. Water, Air, and Soil Pollution: Focus 7: 41–47.

    Article  CAS  Google Scholar 

  • Gorham, E. 1985. The chemistry of bog waters. In Chemical processes in lakes, ed. W. Stumm, 330–363. New York: Wiley.

    Google Scholar 

  • Harriman, R., H. Anderson, and J.D. Miller. 1995. The role of sea-salts in enhancing and mitigating surface water acidity. Water, Air, and Soil pollution 85: 553–558.

    Article  CAS  Google Scholar 

  • Henriksen, A., M. Posch, H. Hultberg, and L. Lien. 1995. Critical loads of acidity for surface waters—can the ANClimit be considered variable? Water, Air, and Soil pollution 85(4): 2419–2424.

    Article  CAS  Google Scholar 

  • Hindar, A., A. Henriksen, K. Torseth, and A. Semb. 1994. Acid water and fish death. Nature 372: 327–328.

    Article  CAS  Google Scholar 

  • Huntrieser, H., J. Heland, H. Schlager, C. Forster, A. Stohl, H. Aufmhoff, F. Arnold, H.E. Scheel, et al. 2005. Intercontinental air pollution transport from North America to Europe: Experimental evidence from airborne measurements and surface observations. Journal of Geophysical Research Atmospheres 110: 1–22.

    Google Scholar 

  • Jeffries, D.S., T.A. Clair, S. Couture, P. Dillon, J. Dupont, B. Keller, D. McNicol, M. Turner, et al. 2003. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. Ambio 32(3): 176–182.

    Google Scholar 

  • Kähkonen, A.M. 1996. Soil geochemistry in relation to water chemistry and sensitivity to acid deposition in Finnish Lapland. Water, Air, and Soil pollution 87: 311–327.

    Article  Google Scholar 

  • Kernan, M., R.W. Batterbee, C.J. Curtis, D.T. Monteith, and E.M. Shilland. 2010. Recovery of lakes and streams in the UK from the effects of acid rain: UK acid waters monitoring network 20 year interpretive report, 465. London: University College London.

    Google Scholar 

  • Kopáček, J., D. Hardekopf, V. Majer, P. Psenakova, P. Stuchlik, and J. Vesely. 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. Journal of Limnology 63: 143–156.

    Google Scholar 

  • Kopáček, J., E. Stuchlik, and D. Hardekopf. 2006. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia Bratislava 61: 21–33.

    Article  Google Scholar 

  • Moldan, F., J. Hruška, C. Evans, and M. Hauhs. 2011. Experimental simulation of the effects of extreme climatic events on major ions, acidity and dissolved organic carbon leaching from a forested catchment, Gårdsjön, Sweden. Biogeochemistry. doi:10.1007/s10533-010-9567-6

  • Möller, D. 1990. The Na/Cl ratio in rainwater and the seasalt chloride cycle. Tellus 42B: 254–262.

    Google Scholar 

  • O’Brien, P.C., and T.R. Fleming. 1987. A paired Prentice–Wilcoxon test for censored paired data. Biometrics 43: 169–180.

    Article  Google Scholar 

  • Pilgrim, W., T.A. Clair, J. Choate, and R. Hughes. 2003. Changes in acid precipitation related water chemistry of lakes from southwestern New Brunswick, Canada, 1986–2001. Environmental Monitoring and Assessment 88: 39–52.

    Article  CAS  Google Scholar 

  • Reuss, J.O., and D.W. Johnson. 1986. Acid deposition and the acidification of soils and waters. New York: Springer-Verlag.

    Book  Google Scholar 

  • Salmi, T., A. Määttä, P. Anttila, T. Ruoho-Airola, and T. Amnell. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates—the Excel template application MAKESENS. Publications on Air Quality No. 31. Helsinki: Finnish Meteorological Institute.

  • Skjelkvåle, B.L., R. Wright, and A. Henriksen. 1998. Norwegian lakes show widespread recovery from acidification; Results from national surveys of lakewater chemistry 1986–1997. Hydrology and Earth System Sciences 2(4): 555–562.

    Article  Google Scholar 

  • Skjelkvåle, B.L., J. Mannio, A. Wilander, and T. Anderson. 2001. Recovery from acidification of lakes in Finland, Norway, and Sweden 1990–1999. Hydrology and Earth System Science 5(3): 327–337.

    Article  Google Scholar 

  • Skjelkvåle, B.L., C.D. Evans, T. Larsson, A. Hindar, and G.G. Raddum. 2003. Recovery from acidification in European surface waters: A view to the future. Ambio 32(3): 170–175.

    Google Scholar 

  • Skjelkvåle, B.L., J. Stoddard, D.S. Jeffries, K. Torseth, T. Hogasen, J.J. Bowman, J. Mannio, D.T. Monteith, et al. 2005. Regional scale evidence for improvements in surface water chemistry 1991–2001. Environmental Pollution 137: 165–176.

    Article  Google Scholar 

  • Stoddard, J., D.S. Jeffries, A. Lükewille, T.A. Clair, P.J. Dillon, C.T. Driscoll, M. Forsius, M. Johannesson, et al. 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575–578.

    Article  CAS  Google Scholar 

  • Stuchlik, E., J. Kopáček, J. Fott, and Z. Horicka. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia Bratislava 61: 11–20.

    Article  Google Scholar 

  • Sullivan, T.J., M.C. Saunders, K.A. Tonnesson, B.L. Nash, and B.J. Miller. 2005. Application of a regionalized knowledge-based model for classifying the impacts of nitrogen, sulfur, and organic acids on lakewater chemistry. Knowledge-Based Systems 18: 65–68.

    Article  Google Scholar 

  • Sweeney, J., T. Brereton, C. Byrne, R. Charlton, C. Emblow, C. Fealy, N. Holden, M. Jones, et al. 2003. Climate change: Scenarios and impacts. Final report. Environmental RTDI Programme 2000–2006. Environmental Protection Agency, Ireland.

  • UNECE. 1999. The 1999 protocol to abate acidification, eutrophication and ground-level ozone. Document ECE/EB.AIR/67. New York, Geneva: United Nations Economic Commission for Europe.

Download references

Acknowledgements

Financial support for this research was provided by the Irish Environmental Protection Agency under the Climate Change Research Programme (CCRP) 2007–2013 and the Canada Research Chair and NSERC discovery grant programs. We gratefully thank E. P. Farrell and T. Cummins for providing laboratory facilities at University College Dublin, and T. Clair for assistance with lake chemistry quality control. Finally, this work would not have been possible without the extraordinary efforts of the field crew: Jim Johnson, Brent Parsons, Tim Seabert, Koji Tominaga, Colin Whitfield and Antoni Zbieranowski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, A.W., Aherne, J. Changes in the Chemistry of Small Irish lakes. AMBIO 41, 170–179 (2012). https://doi.org/10.1007/s13280-011-0177-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-011-0177-x

Keywords

Navigation