, 40:624 | Cite as

Plant and Vegetation Dynamics on Disko Island, West Greenland: Snapshots Separated by Over 40 Years

  • Terry V. Callaghan
  • Torben R. Christensen
  • Elin J. Jantze


We report on a revisit in 2009 to sites where vegetation was recorded in 1967 and 1970 on Disko Island, West Greenland. Re-sampling of the same clones of the grass Phleum alpinum after 39 years showed complete stability in biometrics but dramatic earlier onset of various phenological stages that were not related to changes in population density. In a fell-field community, there was a net species loss, but in a herb-slope community, species losses balanced those that were gained. The type of species establishing and increasing in frequency and/or cover abundance at the fell-field site, particularly prostrate dwarf shrubs, indicates a possible start of a shift towards a heath, rather than a fell-field community. At the herb-slope site, those species that established or increased markedly in frequency and/or cover abundance indicate a change to drier conditions. This is confirmed both by the decrease in abundance of Alchemilla glomerulans and Epilobium hornemanii, and the drying of a nearby pond. The causes of these changes are unknown, although mean annual temperature has risen since 1984.


Vegetation change Arctic West Greenland Phenology Biometrics 



This study formed part of the IPY project ‘Back to the Future’ ( and the authors are grateful to our colleagues Professor Pat Webber and Dr. Craig Tweedie for collaboration in the establishment of this project. Dr. Thomas Bjoernebo Berg kindly helped with arrangements for the field visit and we would like to thank the Arctic Station for welcoming us and providing facilities. Of course the project would have been impossible without the formative studies of the others who established the IBP Tundra Biome Bi-Polar Botanical Project—Dr. S.W. Greene, Mrs. D.M. Greene and Dr. M.C. Lewis (all now deceased), and Dr. G.C.S. Clarke and B. Philipps. The project was financed by a grant from the Swedish Research Council (Vetenskapsrådet) 327-2007-833 as part of the International project ‘Retrospective and prospective vegetation change in the polar regions: Back to the Future’ Project (BTF; IPY Project number ID No 512).

Supplementary material

13280_2011_169_MOESM1_ESM.doc (196 kb)
Supplementary material 1 (DOC 196 kb)


  1. ACIA. 2005. Arctic climate impact assessment. Cambridge: Cambridge University Press.Google Scholar
  2. Anisimov, O.A., D.G. Vaughan, T.V. Callaghan, C. Furgal, H. Marchant, T.D. Prowse, H. Vilhjálmsson, and J.E. Walsh. 2007. Polar regions (Arctic and Antarctic). In Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. M.L. Parry, O.F. Canziani, J.P. Palutikof, C.E. Hanson, and P.J. van der Linden, 655–685. Cambridge: Cambridge University Press.Google Scholar
  3. Arft, A.M., M.D. Walker, J. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs 69: 491–511.Google Scholar
  4. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 1–20.CrossRefGoogle Scholar
  5. Bliss, L.C., O.W. Heal, and J.J. Moore. 1981. Tundra ecosystems: A comparative analysis. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Böcher, T.W., K. Holmen, and K. Jacobsen. 1968. The flora of Greenland. Copenhagen: P. Haase & Son.Google Scholar
  7. Bokhorst, S., J.W. Bjerke, H. Tømmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.CrossRefGoogle Scholar
  8. Büntgen, U., and F.H. Schweingrubber. 2010. Environmental change without climate change? New Phytologist 188: 646–651.CrossRefGoogle Scholar
  9. Butchart, S.H.M., M. Walpole, B. Collen, A. van Strien, J.P.W. Scharlemann, I. Rosamunde, E.A. Almond, J.E.M. Baillie, et al. 2010. Global biodiversity: Indicators of recent declines. Science 328: 1164–1168.CrossRefGoogle Scholar
  10. Cairns, D.M., and J. Moen. 2004. Herbivory influences tree lines. Journal of Ecology 92: 1019–1024.CrossRefGoogle Scholar
  11. Callaghan, T.V. 1972. Ecophysiological and taxonomic studies on bipolar Phleum alpinum L. PhD thesis, University of Birmingham.Google Scholar
  12. Callaghan, T.V. 1974. Intraspecific variation in Phleum alpinum L. with special reference to polar populations. Arctic Alpine Research 6: 361–401.CrossRefGoogle Scholar
  13. Callaghan, T.V., and C.E. Tweedie (eds.) 2011. Multi-decadal changes in Tundra environments and ecosystems—The International Polar Year Back to the Future Project. Ambio Special Issue 40(6).Google Scholar
  14. Callaghan, T.V., C.E. Tweedie, and P.J. Webber. 2011. Multi-decadal changes in Tundra environments and ecosystems: The International Polar Year Back to the Future Project (IPY-BTF). Ambio. doi: 10.1007/s13280-011-0162-4.
  15. Callaghan, T.V., L.O. Björn, Y. Chernov, F.S. Chapin, T.R. Christensen, B. Huntley, R. Ims, S. Jonasson, et al. 2005. Tundra and polar desert ecosystems. In ACIA Arctic climate impacts assessment, ed. C. Symon, L. Arris, and B. Heal, 243–352. Cambridge: Cambridge University Press.Google Scholar
  16. Callaghan, T.V., R.I.L. Smith, and D.W.H. Walton. 1976. The IBP bipolar botanical project. Philosophical Transactions of the Royal Society London Biological Sciences 274: 15–319.Google Scholar
  17. Callaghan, T.V., M. Sonesson, and L. Somme. 1992. Responses of terrestrial plants and invertebrates to environmental change at high latitudes. Philosophical Transactions of the Royal Society London Biological Sciences 338: 279–288.CrossRefGoogle Scholar
  18. Campioli, M., L.E. Street, A. Michelse, G.R. Shaver, T. Maere, R. Samson, and R. Lemeur. 2009. Determination of Leaf Area Index, total foliar nitrogen, and Normalised Difference Vegetation Index for arctic ecosystems dominated by Cassiope tetragona L. Arctic, Antarctic, and Alpine Research 41 (4): 426–433.CrossRefGoogle Scholar
  19. Chapin III, F.S., M. Berman, T.V. Callaghan, P. Convey, A.S.E. Crepin, K. Danell, H. Ducklow, and B. Forbes. 2005. Polar ecosystems. In Ecosystems, human well-being: Current state, trends, vol. 1, ed. R. Hassan, R. Scholes, and N. Ash, 719–743. Washington: Island Press.Google Scholar
  20. Chapin III, F.S., R.L. Jefferies, J.F. Reynolds, G.R. Shaver, and J. Svoboda. 1992. Arctic ecosystems in a changing climate: An ecophysiological perspective. San Diego: Academic Press.Google Scholar
  21. Clarke, G.C.S., S.W. Greene, and D.M. Greene. 1971. Productivity of bryophytes in polar regions. Annals of Botany 35: 99–108.Google Scholar
  22. Danby, R.K., and D.S. Hik. 2007. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology 95: 352–363.CrossRefGoogle Scholar
  23. Daniëls, F.J.A., and J.G. de Molenaar. 2011. Flora and vegetation of Tasiilaq, Formerly Angmagssalik, Southeast Greenland—a comparison of data from between around 1900 and 2007. Ambio. doi: 10.1007/s13280-011-0171-3.
  24. Euskirchen, E.S., A.D. McGuire, F.S.I.I.I. Chapin, S. Yi, and C.C. Thompson. 2009. Changes in vegetation in northern Alaska under scenarios of climate change 2003–2100: Implications for climate feedbacks. Ecological Applications 19: 1022–1043.CrossRefGoogle Scholar
  25. Forbes, B., M. Fauria, and P. Zetterberg. 2009. Russian Arctic warming and greening are closely tracked by tundra shrub willows. Global Change Biology 15 (7): 1–13.Google Scholar
  26. Goswami, S., J.A. Gamon, and C.E. Tweedie. 2011. Surface hydrology of an arctic ecosystem: Multiscale analysis of a flooding and draining experiment using spectral reflectance. Journal of Geophysical Research 116: G00I07. doi: 10.1029/2010JG001346.
  27. Hallinger, M., M. Manthey, and M. Wilmking. 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890–899.CrossRefGoogle Scholar
  28. Hansen, B.U., B. Elberling, O. Humlum, and N. Nielsen. 2006. Meteorological trends (1991–2004) at Arctic Station, Central West Greenland (69°15′N) in a 130 year perspective. Danish Journal of Geography 106 (1): 45–55.Google Scholar
  29. Henry, G.H.R., and U. Molau. 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology 3 (S1): 1–9.CrossRefGoogle Scholar
  30. Hinzman, L.D., N.D. Bettez, W.R. Bolton, F.S. Chapin, N.B. Dyurgerov, C.L. Fastie, B. Griffith, R.D. Hollister, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72: 251–298.Google Scholar
  31. Høye, T.T., E. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High-Arctic. Current Biology 17: R449–R451.CrossRefGoogle Scholar
  32. Humlum, O. 1998. Active layer thermal regime 1991–1996 at Qeqertarsuaq, Disko Island, Central West Greenland. Arctic and Alpine Research 30 (3): 295–305.CrossRefGoogle Scholar
  33. Jia, G.J., H.E. Epstein, and D.A. Walker. 2003. Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30: 2067. doi: 10.1029/2003GL018268.CrossRefGoogle Scholar
  34. Jonsdottir, I.S., B. Magnusson, J. Gudmundsson, A. Elmarsdottir, and H. Hjartason. 2005. Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biology 11 (4): 553–563.CrossRefGoogle Scholar
  35. Kaplan, J.O., N.H. Bigelow, I.C. Prentice, S.P. Harrison, P.J. Bartlein, T.R. Christensen, W. Cramer, N.V. Matveyeva, et al. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108 (D19): 8171. doi: 10.1029/2002JD002559.CrossRefGoogle Scholar
  36. Kaplan, J.O., and M. New. 2006. Arctic climate change with a 2°C global warming: Timing, climate patterns and vegetation change. Climatic Change 79: 213–241.CrossRefGoogle Scholar
  37. Lewis, M.C., and T.V. Callaghan. 1970. Bipolar botanical project: Primary productivity studies on Disko Island, West Greenland. In Tundra biome working meeting on analysis of ecosystems, Kevo, Finland, ed. O.W. Heal, 34–50. London: Tundra Biome Steering Committee.Google Scholar
  38. Molau, U., U. Nordenhall, and B. Eriksen. 2005. Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. American Journal of Botany 92 (3): 422–431.CrossRefGoogle Scholar
  39. Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asra, and R.R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698–702.CrossRefGoogle Scholar
  40. Olofsson, J., L. Oksanen, T.V. Callaghan, P.E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15: 2681–2693.CrossRefGoogle Scholar
  41. Post, E., M.C. Forchhammer, S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.CrossRefGoogle Scholar
  42. Prach, K., J. Kosnar, J. Klimesova, and M. Hais. 2010. High Arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biology 33: 635–639.CrossRefGoogle Scholar
  43. Shaver, G.R., and J.C. Cutler. 1979. The vertical distribution of live vascular phytomass in cottongrass tussock tundra. Arctic and Alpine Research 11: 335–342.CrossRefGoogle Scholar
  44. Sitch, S., B. Smith, I. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. Kaplan, S. Levis, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9 (2): 161–185.CrossRefGoogle Scholar
  45. Smith, L.C., Y. Sheng, G.M. MacDonald, and L.D. Hinzman. 2005. Disappearing Arctic lakes. Science 308: 1429.CrossRefGoogle Scholar
  46. Smol, J.P., and M.S.V. Douglas. 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences 104 (30): 12395–12397.CrossRefGoogle Scholar
  47. Sturm, M., C. Racine, and K. Tape. 2001. Climate change—increasing shrub abundance in the Arctic. Nature 411: 546–547.CrossRefGoogle Scholar
  48. Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12: 686–702.CrossRefGoogle Scholar
  49. Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden show local and regional variability and only a minor role of 20th century climate warming. Journal of Biogeography 38: 907–921.CrossRefGoogle Scholar
  50. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2009. Competitive interaction between aspen and birch moderated by invertebrate and vertebrate herbivores and climate warming. Plant Ecology and Diversity 2: 221–232.CrossRefGoogle Scholar
  51. Wolf, A.K., K. Larsson, and T.V. Callaghan. 2008. Future vegetation changes in the Barents Region. Climatic Change 87: 51–73.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Terry V. Callaghan
    • 1
    • 2
  • Torben R. Christensen
    • 3
  • Elin J. Jantze
    • 4
  1. 1.Royal Swedish Academy of SciencesStockholmSweden
  2. 2.Department of Plant and Animal Sciences, Sheffield Centre for Arctic EcologyUniversity of SheffieldSheffieldUK
  3. 3.Division of Physical Geography and Ecosystem Analyses, Department of Earth and Ecosystem SciencesLund UniversityLundSweden
  4. 4.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden

Personalised recommendations