, 40:566 | Cite as

Multi-Decadal Changes in Snow Characteristics in Sub-Arctic Sweden

  • Cecilia Johansson
  • Veijo A. Pohjola
  • Christer Jonasson
  • Terry V. Callaghan


A unique long term, 49-year record (divided into three time periods 1961–1976, 1977–1992, and 1993–2009) of snow profile stratigraphy from the Swedish sub Arctic, was analyzed with a focus on changes in snow characteristics. The data set contained grain size, snow layer hardness, grain compactness, and snow layer dryness, observed every second week during the winter season. The results showed an increase in very hard snow layers, with harder snow in early winter and more moist snow during spring. There was a striking increase in the number of observations with very hard snow at ground level over time. More than twice as many occasions with hard snow at ground level were observed between 1993 and 2009 compared to previous years, which may have a significant effect on plants and animals. The changes in snow characteristics are most likely a result of the increasing temperatures during the start and the end of the snow season.


Snowpack stratigraphy Snow profile Climate change Snow layer hardness Ice layers 



We thank the observers at the Abisko Station for their dedication to collecting the data used in this study—often over many years and under difficult field conditions. We also thank Johan Wiksten for digitizing the data and Hans Bergström for valuable discussions. The rescue of old data archives is part of the IPY project No 512 Back to the Future supported by a Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) grant (214-2008-188) and the Swedish National Space Board (70/07:1, 70/07:2, 116/09:1, 116/09:2). TVC also gratefully acknowledges Formas for the grants 214-2008-188 and 214-2009-389.

Supplementary material

13280_2011_164_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1383 kb)


  1. Aanes, R., B.E. Saether, and N.A. Oritsland. 2000. Fluctuations of an introduced population of Svalbard reindeer: The effects of density dependence and climatic variation. Ecography 23(4): 437–443.CrossRefGoogle Scholar
  2. ACIA. 2005. Arctic climate impact assessment. New York: Cambridge University Press.Google Scholar
  3. Andrews, C., J. Dick, C. Jonasson, and T.V. Callaghan. 2011. Assessment of biological and environmental phenology at a landscape level from 30 years of fixed date repeat photography in Northern Sweden. Ambio. doi:10.1007/s13280-011-0167-z.
  4. Arft, A.M., M.D. Walker, J. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs 69: 491–511.Google Scholar
  5. Baddour, O., and H. Kontongomde. 2007. The role of climatological normals in a changing climate. The World Climate Data and Monitoring Programme (WCDMP), WCDMP-No. 61. WMO-TD No. 1377. Geneva: World Meteorological Organization.Google Scholar
  6. Barry, R.G., R. Armstrong, T.V. Callaghan, J. Cherry, S. Gearheard, A. Nolin, D. Russell, and C. Zöckler. 2007. Snow. In Global outlook for snow and ice, ed. UNEP, 39–62. Arendal: UNEP/GRID.Google Scholar
  7. Bokhorst, S.F., J.W. Bjerke, H. Tømmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.CrossRefGoogle Scholar
  8. Callaghan, T. V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 34: L14705. doi: 10.1029/2009GL042064.
  9. Callaghan, T.V., L.O. Björn, Y. Chernov, F.S. Chapin, T.R. Christensen, B. Huntley, R. Ims, S. Jonasson, D. Jolly, et al. 2005. Tundra and polar desert ecosystems. In ACIA (Arctic climate impacts assessment), ed. C. Symon, L. Arris, and B. Heal, 243–352. Cambridge: Cambridge University Press.Google Scholar
  10. Colbeck, S., E. Akitaya, R. Armstrong, H. Gubler, J. Lafeuille, K. Lied, D. McClung, and E. Morris, E. 1990. The international classification for seasonal snow on the ground. The International Commission on Snow and Ice of the International Association of Scientific Hydrology.Google Scholar
  11. Déry, S.J., and R.D. Brown. 2007. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophysical Research Letters 34: L22504. doi: 10.1029/2007GL031474.CrossRefGoogle Scholar
  12. Euskirchen, E.S., A.D. McGuire, D.W. Kicklighter, Q. Zhuang, J.S. Clein, R.J. Dargaville, D.G. Dye, J.S. Kimball, et al. 2006. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology 12: 731–750.CrossRefGoogle Scholar
  13. Fierz, C., R.R.L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D.M. McClung, K. Nishimura, P.K. Satyawali, and S.A. Sokratov. 2009. The international classification for seasonal snow on the ground. IHP-VII technical documents in hydrology No. 83, IACS contribution No. 1. Paris: UNESCO-IHP.Google Scholar
  14. Hanssen-Bauer, I., and E. Førland. 2000. Temperature and precipitation variations in Norway 1900–1994 and their link to atmospheric circulation. International Journal of Climatology 20: 1693–1708.CrossRefGoogle Scholar
  15. Heggberget, T.M., E. Gaare, and J.P. Ball. 2002. Reindeer (Rangifer tarandus) and climate change: Importance of winter forage. Rangifer 22(1): 13–31.Google Scholar
  16. Ingvander, S., C. Johansson, P. Jansson, and R. Pettersson. 2011. Comparison between digital and manual methods of snow particle size estimation. Hydrology Research (accepted).Google Scholar
  17. IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: The physical science basis. New York: Cambridge University Press.Google Scholar
  18. Johansson, M., T.R. Christensen, H.J. Akerman, and T.V. Callaghan. 2006. What determines the current presence or absence of permafrost in the Torneträsk Region, a sub-Arctic landscape in Northern Sweden? Ambio 35: 190–197.CrossRefGoogle Scholar
  19. Kausrud, K.L., A. Mysterud, H. Steen, J.O. Vik, E. Østbye, B. Cazelles, E. Framstad, A.M. Eikeset, et al. 2008. Linking climate change to lemming cycles. Nature 456: 93–97.CrossRefGoogle Scholar
  20. Kohler, J., O. Brandt, M. Johansson, and T.V. Callaghan. 2006. A long Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Research 25(2): 91–113.CrossRefGoogle Scholar
  21. Larsson, M. 2004. Can effects from global warming be seen in Swedish snow statistics? Examensarbete vid institutionen för geovetenskaper 90.
  22. Lohmann, U., R. Sausen, L. Bengtsson, U. Cubasch, J. Perlwitz, and E. Roeckner. 1993. The Koppen climate classification as a diagnostic tool for general circulation models. Climate Research 3: 177–193.CrossRefGoogle Scholar
  23. Post, E., M.C. Forchhammer, S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.CrossRefGoogle Scholar
  24. Rennert, K.J., G. Roe, J. Putkonen, and C.M. Bitz. 2009. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. Journal of Climate 22: 2302–2315.CrossRefGoogle Scholar
  25. Riseth, J.Å., H. Tømmervik, E. Helander-Renvall, N. Labba, C. Johansson, E. Malnes, J.W. Bjerke, C. Jonasson, et al. 2010. Sámi traditional ecological knowledge as a guide to science: snow, ice and reindeer pasture facing climate change. Polar Record. 47: 202–217. doi: 10.1017/S0032247410000434.Google Scholar
  26. Starr, G., S.F. Oberbauer, and L.E. Ahlquist. 2008. The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arctic, Antarctic, and Alpine Research 40: 181–191.CrossRefGoogle Scholar
  27. Stieglitz, M., S.J. Dery, V.E. Romanovsky, and T.E. Osterkamp. 2003. The role of snow cover in the warming of arctic permafrost. Geophysical Research Letters. 30:1721. doi: 10.1029/2003GL017337.
  28. Turunen, M., P. Soppela, H. Kinnunen, M.L. Sutinen, and F. Martz. 2009. Does climate change influence the availability and quality of reindeer forage plants? Polar Biology 6: 813–832.CrossRefGoogle Scholar
  29. Vikhamar-Schuler, D., I. Hanssen-Bauer, and E.J. Førland. 2010. Long-term climate trends of Finnmarksvidda, Northern-Norway. Report no. 6. Oslo: Norwegian Meteorological Institute.Google Scholar
  30. Wahren, C.H.A., M.D. Walker, and M.S. Bret-Harte. 2005. Vegetation responses in Alaskan arctic tundra 8 years of a summer warming and winter snow manipulation experiment. Global Change Biology 11: 537–552.CrossRefGoogle Scholar
  31. Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harteh, M.P. Calefh, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–1346.CrossRefGoogle Scholar
  32. Yarie, J.H. 2008. Effects of moisture limitation on tree growth in upland and floodplain forest ecosystems in interior Alaska. Forest Ecology and Management 256: 1055–1063.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Cecilia Johansson
    • 1
  • Veijo A. Pohjola
    • 1
  • Christer Jonasson
    • 2
  • Terry V. Callaghan
    • 3
    • 4
  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.Abisko Scientific Research StationSwedish Polar Research SecretariatAbiskoSweden
  3. 3.Royal Swedish Academy of SciencesStockholmSweden
  4. 4.Sheffield Centre for Arctic Ecology, Department of Plant and Animal SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations