Skip to main content
Log in

Phytoremediation Potential of Aquatic Macrophyte, Azolla

  • Review Paper
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahluwalia, A.S., and A. Pabby. 2002. Azolla: A green gold mine with diversified applications. Indian Fern Journal 19: 1–9.

    Google Scholar 

  • Amtmann, A., and P. Armenguad. 2009. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Current Opinion in Plant Biology 12: 275–283.

    CAS  Google Scholar 

  • Antunes, A.P.M., G.M. Watkins, and J.R. Duncan. 2001. Batch studies on the removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnology Letters 23: 249–251.

    CAS  Google Scholar 

  • Aravind, P., M.N.V. Prasad, P. Malec, A. Waloszek, and K. Strzałka. 2009. Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. Journal of Trace Elements in Medicine and Biology 23: 50–60.

    CAS  Google Scholar 

  • Arora, A., and S. Saxena. 2005. Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluent. Biomass Bioenergy 29: 60–64.

    CAS  Google Scholar 

  • Arora, A., A. Sood, and P.K. Singh. 2004. Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology 3: 302–304.

    Google Scholar 

  • Arora, A., S. Saxena, and D.K. Sharma. 2006. Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology 22: 97–100.

    CAS  Google Scholar 

  • Arora, M., K. Kiran, S. Rani, A. Rani, B. Kaur, and N. Mittal. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry 111: 811–815.

    CAS  Google Scholar 

  • Assuncao, A.G.L., P. Bleeker, W.M. Ten Bookum, R. Vooijs, and H. Schat. 2008. Intraspecific variation in metal preference patterns for hyperaccumulation in Thalspi caerulenscens: Evidence for binary metal exposures. Plant and Soil 303: 289–299.

    CAS  Google Scholar 

  • Babić, M., S. Radić, P. Cvjetko, V. Roje, B. Pevalek-Kozlina, and M. Pavlica. 2009. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany 91: 166–172.

    Google Scholar 

  • Benaroya, B.O., V. Tzin, E. Tel-Or, and E. Zamski. 2004. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiology and Biochemistry 42: 639–645.

    CAS  Google Scholar 

  • Bennicelli, R., Z. Stezpniewska, A. Banach, K. Szajnocha, and J. Ostrowski. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55: 141–146.

    CAS  Google Scholar 

  • Boulé, K.M., J.A.F. Vicente, C. Nabais, M.N.V. Prasad, and H. Freitas. 2009. Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology 91: 1–9.

    Google Scholar 

  • Boyd, C.E. 1970. Vascular aquatic plants for mineral nutrient removal from pollutant water. Economic Botany 24: 95–103.

    Google Scholar 

  • Brook, R.R., and B.H. Robinson. 1998. Aquatic phytoremediation by accumulator plants. In Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, ed. Brook, R.R, 203–226. Wallingford, UK: CABI International.

  • Carrapiço, F. 2010. Azolla as a superorganism. Its implication in symbiotic studies. In Symbioses and stress, ed. J. Seckbach and M. Grube, 227–241. Berlin: Springer.

  • Central Pollution Control Board. 2008. Status of water quality in India 2007, New Delhi, India: CPCB.

  • Chambers, P.A., P. Lacoul, K.J. Murphy, and S.M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Google Scholar 

  • Chang, J.S., I.H. Yoon, and K.-W. Kim. 2009. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecological Indicators 9: 1275–1279.

    CAS  Google Scholar 

  • Cheng, S. 2003. Heavy metals in plants and phytoremediation. Environmental Science and Pollution Research 10: 335–340.

    CAS  Google Scholar 

  • Cobbet, C., and P. Goldsbrough. 2002. Phytochelatins and metallothioneins: Role in heavy metal detoxification and homeostasis. Annual Reviews in Plant Biology 53: 159–182.

    Google Scholar 

  • Cohen-Shoel, N., Z. Barkay, D. Ilzycer, I. Gilath, and E. Tel-Or. 2002. Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution 135: 93–104.

    CAS  Google Scholar 

  • Conwell Jr., D.A., J. Zoltek, C.D. Patrinely, T.S. Furman, and J.I. Kim. 1977. Nutrient removal by water hyacinths. Journal of the Water Pollution Control Federation 49: 57–65.

    Google Scholar 

  • Dai, L.P., Z.T. Xiong, Y. Huang, and M.J. Li. 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environmental Toxicology 21: 505–512.

    CAS  Google Scholar 

  • Dai, L.P., Z.T. Xiong, and H.H. Ma. 2009. Effects of cadmium on nitrogen metabolism in Azolla imbricata-Anabaena azollae symbiosis. Acta Ecologica Sinica 29: 1629–1638.

    Google Scholar 

  • Dhir, B., P. Sharmila, and P.P. Saradhi. 2009a. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology 39: 754–781.

    CAS  Google Scholar 

  • Dhir, B., P. Sharmila, P. Pardha Saradhi, and S.A. Nasim. 2009b. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicology and Environmental Safety 72: 1790–1797.

    CAS  Google Scholar 

  • Dhote, S., and S. Dixit. 2009. Water quality improvement through macrophytes- a review. Environmental Monitoring and Assessment 152: 149–153.

    CAS  Google Scholar 

  • Eccles, H. 1995. Removal of heavy metals from effluent streams - why select a biological process? International Biodeterioration and Biodegradation 35: 5–16.

    CAS  Google Scholar 

  • EPA (Environmental Protection Agency). 1997. Electrokinetic laboratory and field processes applicable to radioactive and hazardous mixed waste in soil and ground water. EPA 402/R-97/006. Washington, DC.

  • Espinoza-Qui˜nones, F.R., A.N. Módenes, L.P. Thomé, S.M. Palácio, D.E.G. Trigueros, A.P. Oliveira, and N. Szymanski. 2009. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chemical Engineering Journal 150: 316–322.

    Google Scholar 

  • Firdaus-e-Bareen, and S. Khilji. 2008. Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal of Biotechnology 18: 3314–3320.

    Google Scholar 

  • Flathman, P.E., and G.R. Lanza. 1998. Phytoremediation: current views on an emerging green technology. Journal of Soil Contamination 7: 415–432.

    Google Scholar 

  • Fogarty, R.V., P. Dostalek, M. Patzak, J. Votruba, E. Tel-Or, and J.M. Tobin. 1999. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Techniques 13: 533–538.

    CAS  Google Scholar 

  • Gaumat, S., K. Mishra, U.N. Rai, and U. Baipal. 2008. Ultramorphological variation in Azolla pinnata R.Br. under single and mixed metal treatment with lead and iron. Phytomorphology 58: 111–116.

    Google Scholar 

  • Gaur, J.P., N. Noraho, and Y.S. Chauhan. 1994. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany 94: 183–192.

    Google Scholar 

  • Hoang Ha, N.T.H., M. Sakakibara, S. Sano, R.S. Hori, and K. Sera. 2009. The potential of Eleocharis acicularis for phytoremediation: Case study at an abandoned mine site. Clean Soil, Air, Water 37: 203–208.

    Google Scholar 

  • Hu, C., L. Zhang, D. Hamilton, W. Zhou, T. Yang, and D. Zhu. 2007. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579: 211–218.

    CAS  Google Scholar 

  • Jafari, N., Z. Senobari, and R.K. Pathak. 2010. Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), Cu (II) and Zn(II). Ecology, Environment and Conservation 16: 443–449.

    CAS  Google Scholar 

  • Jain, S.K., P. Vasudevan, and N.K. Jha. 1989. Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes 28: 115–126.

    CAS  Google Scholar 

  • Jain, S.K., P. Vasudevan, and N.K. Jha. 1990. Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research 24: 177–183.

    CAS  Google Scholar 

  • Kar, P.P., and D.P. Singh. 2003. Effect of some heavy metals on sporulation and growth of Azolla caroliniana and Azolla microphylla. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 5: 105–114.

    CAS  Google Scholar 

  • Kathiresan, R.M. 2007. Integration of elements of a farming system for sustainable weed and pest management in the tropics. Crop Protection 26: 424–429.

    Google Scholar 

  • Khellaf, N., and M. Zerdaoui. 2009. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology 100: 6137–6140.

    CAS  Google Scholar 

  • Khosravi, M., R. Rakhshaee, and M.T. Ganji. 2005. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd (II), Ni (II) and Zn (II) from aqueous solution in batch and fixed-bed reactor. Journal of Hazardous Materials B127: 228–237.

    Google Scholar 

  • Lokeshwari, H., and G.T. Chandrappa. 2007. Effects of heavy metal contamination from anthropogenic sources on Dasarahalli tank, India. Lakes and Reservoirs: Research and Management 12: 121–128.

    CAS  Google Scholar 

  • Maleva, M.G., G.F. Nekrasova, P. Malec, M.N.V. Prasad, and K. Strzałka. 2009. Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77: 392–398.

    CAS  Google Scholar 

  • Mallick, N., Shardendu, and L.C. Rai. 1996. Removal of heavy metals by two free floating aquatic macrophytes. Biomedical and Environmental Sciences 9: 399–407.

    CAS  Google Scholar 

  • Marques, A.P.G.C., A.O.S.S. Rangel, and P.M.L. Castro. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39: 622–654.

    CAS  Google Scholar 

  • Mashkani, S.G., and P.T.M. Ghazvini. 2009. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of Biosorption. Bioresource Technology 100: 1915–1921.

    CAS  Google Scholar 

  • Mishra, K.K., U.N. Rai, and O. Prakash. 2007. Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environmental Monitoring and Assessment 130: 237–243.

    CAS  Google Scholar 

  • Mishra, S., S. Srivastava, R.D. Tripathi, and P.K. Trivedi. 2007. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology 86: 205–215.

    Google Scholar 

  • Mishra, S., S. Srivastava, R.D. Tripathi, S. Dwivedi, and M.K. Shukla. 2008. Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environmental Toxicology 23: 294–301.

    CAS  Google Scholar 

  • Mishra, V.K., and B.D. Tripathi. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology 99: 7091–7097.

    CAS  Google Scholar 

  • Mishra, V.K., A.R. Upadhyay, S.K. Pandey, and B.D. Tripathi. 2008. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment 141: 49–58.

    CAS  Google Scholar 

  • Mishra, V.K., B.D. Tripathi, and K.H. Kim. 2009. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials 172: 749–754.

    CAS  Google Scholar 

  • Mkandawire, M., B. Taubert, and E.G. Dudel. 2004. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation 6: 347–362.

    CAS  Google Scholar 

  • Molisani, M.M., R. Rocha, W. Machado, R.C. Barreto, and L.D. Lacerda. 2006. Mercury contents in aquatic macrophytes from two reservoirs in the paraíba do sul:guandú river system, Se Brazil. Brazilian Journal of Biology 66: 101–107.

    CAS  Google Scholar 

  • Monferran, M.V., J.A. Sanchez Agudo, M.L. Pignata, and D.A. Wunderlin. 2009. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environmental Pollution 157: 2570–2576.

    CAS  Google Scholar 

  • Mufarrege, M.M., H.A. Hadad, and M.A. Maine. 2010. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Archives of Environmental Contamination and Toxicology 58: 53–61.

    CAS  Google Scholar 

  • Nedumaran, B., and M. Velan. 2008. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: Batch and continuous study. Journal of Environmental Science and Engineering 50: 23–28.

    CAS  Google Scholar 

  • Olguín, E.J., E. Hernández, and I. Ramos. 2002. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnologica 22: 121–131.

    Google Scholar 

  • Pabby, A., S. Dua, and A.S. Ahluwalia. 2000. Changes in nitrogen metabolism of Azolla microphylla and Azolla pinnata on supplementation of nitrogen fertilizer. Phykos 39: 51–59.

    Google Scholar 

  • Pabby, A., S. Dua, and A.S. Ahluwalia. 2001. Changes in ammonia-assimilating enzymes in response to different nitrate levels in Azolla pinnata and A. microphylla. Journal of Plant Physiology 158: 899–903.

    CAS  Google Scholar 

  • Pabby, A., A.S. Ahluwalia, and S. Dua. 2002a. Growth response and changes in ammona-assimilating enzymes at elevated temperatures in Azolla pinnata R. Br. and A. microphylla Kaul. Indian Journal of Microbiology 42: 315–318.

    Google Scholar 

  • Pabby, A., A.S. Ahluwalia, and S. Dua. 2002b. Temperature stress induced changes in growth and biochemical constituents of Azolla microphylla and Azolla pinnata. Indian Journal of Plant Physiology 7: 140–145.

    Google Scholar 

  • Pabby, A., A.S. Ahluwalia, and S. Dua. 2003a. Current status of Azolla taxonomy. In Phycology: Principles, Processes and Applications, ed. A.S. Ahluwalia, 48–63. India: Daya Publishers.

    Google Scholar 

  • Pabby, A., R. Prasanna, and P.K. Singh. 2003b. Azolla-Anabaena symbiosis- from traditional agriculture to biotechnology. Indian Journal of Biotechnology 2: 26–37.

    Google Scholar 

  • Pabby, A., R. Prasanna, S. Nayak, and P.K. Singh. 2003c. Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Plant Physiology and Biochemistry 41: 73–79.

    CAS  Google Scholar 

  • Pabby, A., R. Prasanna, and P.K. Singh. 2004a. Morphological characterization of cultured and freshly separated cyanobionts (Nostocals, Cyanophyta) from Azolla species. Acta Botanica Hungarica 46: 211–223.

    Google Scholar 

  • Pabby, A., R. Prasanna, and P.K. Singh. 2004b. Biological significance of Azolla and its utilization in agriculture. Proceedings of Indian National Science Academy B 70: 301–335.

    Google Scholar 

  • Padmesh, T.V.N., K. Vijayraghavan, G. Sekaran, and M. Velan. 2006. Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chemical Engineering Journal 122: 55–63.

    CAS  Google Scholar 

  • Paiva, B.L., J.G. de Oliveira, R.A. Azevedo, D.R. Ribeiro, M.G. da Silva, and A.P. Vitória. 2009. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environmental and Experimental Botany 65: 403–409.

    CAS  Google Scholar 

  • Pietrobelli, J.M.T. A.N. de Módenes, M.R.F. Fagundes-Klen, and F.R. Espinoza-Quiñones. 2009. Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water Air Soil Pollution 202: 385–392.

    CAS  Google Scholar 

  • Prasad, M.N.V., and H. Freitas. 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6: 285–321.

    Google Scholar 

  • Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, C. Okumura, and M.M. Rahman. 2007. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 69: 493–499.

    CAS  Google Scholar 

  • Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, and M.M. Rahman. 2008. Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicology and Environmental Safety 70: 311–318.

    CAS  Google Scholar 

  • Rai, L.C., J.P. Gaur, and H.D. Kumar. 1981. Phycology and heavy metal pollution. Biological Reviews of the Cambridge Philosophical Society 56: 99–151.

    CAS  Google Scholar 

  • Rai, P.K. 2008. Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Intentional Journal of Phytoremediation 10: 430–439.

    CAS  Google Scholar 

  • Rai, P.K. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology 39: 697–753.

    CAS  Google Scholar 

  • Rai, P.K. 2010a. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation. International Journal of Phytoremediation 12: 226–242.

    Google Scholar 

  • Rai, P.K. 2010b. Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation 12: 96–104.

    CAS  Google Scholar 

  • Rai, P.K., and B.D. Tripathi. 2009. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment 148: 75–84.

    CAS  Google Scholar 

  • Rakhshaee, R., M. Khosravi, and M.T. Masoud Taghi Ganji. 2006. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. Journal of Hazardous Materials B134: 120–129.

    Google Scholar 

  • Rascio, N., and F. Navari-Izzo. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180: 169–181.

    CAS  Google Scholar 

  • Sánchez-Chardi, A., C. Peñarroja-Matutano, M. Borrás, and J. Nadal. 2009. Bioaccumulation of metals and effects of a landfill in small mammals Part III: Structural alterations. Environmental Research 109: 960–967.

    Google Scholar 

  • Sánchez-Galván, G., O. Monroy, J. Gómez, and E.J. Olguín. 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil pollution 194: 77–90.

    Google Scholar 

  • Sánchez-Viveros, G., D. Gonzalez, A. Alacon, and R. Ferrera-Cerrato. 2010. Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. caroliniana. International Journal of Agriculture and Biology 12: 365–368.

    Google Scholar 

  • Sanyahumbi, D., J.R. Duncan, M. Zhao, and R. van Hille. 1998. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides. Biotechnology Letters 20: 745–747.

    CAS  Google Scholar 

  • Sarkar, A., and S. Jana. 1986. Heavy metal pollutant tolerance of Azolla pinnata. Water, Air, and Soil pollution 27: 15–18.

    CAS  Google Scholar 

  • Sasmaz, A., E. Obek, and H. Hasar. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering 33: 278–284.

    Google Scholar 

  • Saygideger, S., O. Gulnaz, E.S. Istifli, and N. Yucel. 2005. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L. effect of physicochemical environment. Journal of Hazardous Materials 126: 96–104.

    CAS  Google Scholar 

  • Schor-Fumbarov, T., P.B. Goldsbrough, Z. Adam, and E. Tel-Or. 2005. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223: 69–76.

    CAS  Google Scholar 

  • Schwarz, A., and I. Haves. 1997. Effect of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquatic Botany 56: 169–181.

    Google Scholar 

  • Seidal, K. 1976. Macrophytes and water purification. In Biological control for water pollution, ed. J. Tourbier, and R.W. Pierson, 109–121. Pennsylvania: Pennsylvania University Press.

    Google Scholar 

  • Sela, M., E. Tel-Or, F. Eberhardt, and A. Huttermann. 1988. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiology 88: 30–36.

    CAS  Google Scholar 

  • Sela, M., J. Garty, and E. Tel-Or. 1989. The accumulation and effect of heavy metal on the water fern Azolla filiculoides. New Phytologist 112: 7–12.

    CAS  Google Scholar 

  • Sela, M., E. Fritz, A. Huttermann, and E. Tel-Or. 1990. Studies on cadmium localization in the water fern Azolla. Physiologia Plantarum 79: 547–553.

    CAS  Google Scholar 

  • Serag, M.S., A. El-Hakeem, M. Badway, and M.A. Mousa. 2000. On the ecology of Azolla filiculoides Lam. in Damietta District, Egypt. Limnologica 30: 73–81.

    Google Scholar 

  • Shah, K., and J.M. Nongkynrih. 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum 51: 618–634.

    CAS  Google Scholar 

  • Shi, G.X., Q.S. Xu, K.B. Xie, N. Xu, X.L. Zhang, X.M. Zeng, H.W. Zhou, and L. Zhu. 2003. Physiology and ultrastructure of Azolla imbricata as affected by Hg2+ and Cd2+ toxicity. Acta Botanica Sinica 45: 437–444.

    CAS  Google Scholar 

  • Sivaci, E.R., A. Sivaci, and M. Sokmen. 2004. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56: 1043–1048.

    Google Scholar 

  • Siwela, A.H., C.B. Nyathi, and Y.S. Naik. 2009. Metal accumulation and antioxidant enzyme activity in C. gariepinus, Catfish, and O. mossambicus, tilapia, collected from lower Mguza and Wright Dams, Zimbabwe. Bulletin of Environmental Contamination and Toxicology 83: 648–651.

    CAS  Google Scholar 

  • Skinner, K., N. Wright, and E.P. Goff. 2007. Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution 145: 234–237.

    CAS  Google Scholar 

  • Sood, A., and A.S. Ahluwalia. 2009. Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern Journal 26: 166–178.

    Google Scholar 

  • Sood, A., R. Prasanna, and P.K. Singh. 2007. Utilization of SDS-PAGE of whole cell proteins for characterization of Azolla species. Annales Botanici Fennici 44: 283–286.

    CAS  Google Scholar 

  • Sood, A., R. Prasanna, and P.K. Singh. 2008a. Fingerprinting of freshly separated and cultured cyanobionts from different Azolla species using morphological and molecular markers. Aquatic Botany 88: 142–147.

    CAS  Google Scholar 

  • Sood, A., R. Prasanna, B.M. Prasanna, and P.K. Singh. 2008b. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla. Folia Microbiologica 53: 35–43.

    CAS  Google Scholar 

  • Sood, A., S. Pabbi, and P.L. Uniyal. 2011. Effect of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla Kual. Russian Journal of Plant Physiology 58: 667–673.

    CAS  Google Scholar 

  • Srivastava, J., A. Gupta, and H. Chandra. 2008. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Biotechnology 7: 255–266.

    CAS  Google Scholar 

  • Stepniewska, Z., R.P. Bennicelli, T.I. Balakhnina, K. Szajnocha, A. Banach, and A. Woliñska. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. International Agrophysics 19: 251–255.

    CAS  Google Scholar 

  • Stewart, K.K. 1970. Nutrient removal potential of various aquatic plants. Hyacinth Control Journal 8: 34–35.

    Google Scholar 

  • Suresh, B., and G.A. Ravishankar. 2004. Phytoremediation: A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology 24: 97–124.

    CAS  Google Scholar 

  • Umali, L.J., J.R. Duncan, and J.E. Burgess. 2006. Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnology Letters 28: 45–49.

    CAS  Google Scholar 

  • Upadhyay, A.R., V.K. Mishra, S.K. Pandey, and B.D. Tripathi. 2007. Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering 30: 9–15.

    Google Scholar 

  • Uysal, Y., and F. Taner. 2009. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. International Journal of Phytoremediation 11: 591–608.

    CAS  Google Scholar 

  • Verma, V.K., S. Tewari, and J.P.N. Rai. 2008. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology 99: 1932–1938.

    CAS  Google Scholar 

  • Volesky, B. 2001. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 59: 203–216.

    CAS  Google Scholar 

  • Wagnar, G.M. 1997. Azolla: A review on its biology and utilization. Botanical Reviews 63: 1–26.

    Google Scholar 

  • Wolverton, B.C., and M.M. Mckown. 1976. Water hyacinth for removal of phenols from polluted waters. Aquatic Botany 30: 29–37.

    Google Scholar 

  • Wolverton, B.C., and R.C. McDonald. 1976. Don’t waste waterweeds. New Scientist 71: 318–320.

    CAS  Google Scholar 

  • Wooten, J.W., and D.J. Dodd. 1976. Growth of water hyacinth in treated sewage effluent. Economic Botany 30: 29–37.

    Google Scholar 

  • Yadav, S.K., A.A. Juwarkar, G.P. Kumar, P.R. Thawale, S.K. Singh, and T. Chakrabarti. 2009. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology 100: 4616–4622.

    CAS  Google Scholar 

  • Zhang, X., A.J. Lin, F.J. Zhao, G.Z. Xu, G.L. Duan, and Y.G. Zhu. 2008. Arsenic accumulation by aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution 156: 1149–1155.

    CAS  Google Scholar 

  • Zhang, X., F.J. Zhao, Q. Huang, P.N. Williams, G.X. Sun, and Y.G. Zhu. 2009. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist 182: 421–428.

    CAS  Google Scholar 

  • Zhao, F.J., R.E. Hamon, E. Lombi, M.J. McLaughlin, and S.P. McGrath. 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulators Thalspi caerulenscens. Journal of Experimental Botany 53: 535–543.

    CAS  Google Scholar 

  • Zhao, M., and J.R. Duncan. 1997. Batch removal of sexivalent chromium by Azolla filiculoides. Biotechnology and Applied Biochemistry 26: 179–182.

    CAS  Google Scholar 

  • Zhao, M., and J.R. Duncan. 1998a. Bed-depth-service-time analysis on column removal of Zn2+ using Azolla filiculoides. Biotechnology Letters 20: 37–39.

    CAS  Google Scholar 

  • Zhao, M., and J.R. Duncan. 1998b. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochemistry 33: 249–255.

    CAS  Google Scholar 

  • Zhao, M., J.R. Duncan, and R.P. Van Hille. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Research 33: 1516–1522.

    CAS  Google Scholar 

  • Zhou, Q., J. Zhang, J. Fu, J. Shi, and G. Jiang. 2008. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chairpersons to Department of Botany, University of Delhi, Delhi and Panjab University, Chandigarh, India for providing financial assistance and research facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjuli Sood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, A., Uniyal, P.L., Prasanna, R. et al. Phytoremediation Potential of Aquatic Macrophyte, Azolla . AMBIO 41, 122–137 (2012). https://doi.org/10.1007/s13280-011-0159-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-011-0159-z

Keywords

Navigation