Abstract
Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.
Similar content being viewed by others
References
Ahluwalia, A.S., and A. Pabby. 2002. Azolla: A green gold mine with diversified applications. Indian Fern Journal 19: 1–9.
Amtmann, A., and P. Armenguad. 2009. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Current Opinion in Plant Biology 12: 275–283.
Antunes, A.P.M., G.M. Watkins, and J.R. Duncan. 2001. Batch studies on the removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnology Letters 23: 249–251.
Aravind, P., M.N.V. Prasad, P. Malec, A. Waloszek, and K. Strzałka. 2009. Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. Journal of Trace Elements in Medicine and Biology 23: 50–60.
Arora, A., and S. Saxena. 2005. Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluent. Biomass Bioenergy 29: 60–64.
Arora, A., A. Sood, and P.K. Singh. 2004. Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology 3: 302–304.
Arora, A., S. Saxena, and D.K. Sharma. 2006. Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology 22: 97–100.
Arora, M., K. Kiran, S. Rani, A. Rani, B. Kaur, and N. Mittal. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry 111: 811–815.
Assuncao, A.G.L., P. Bleeker, W.M. Ten Bookum, R. Vooijs, and H. Schat. 2008. Intraspecific variation in metal preference patterns for hyperaccumulation in Thalspi caerulenscens: Evidence for binary metal exposures. Plant and Soil 303: 289–299.
Babić, M., S. Radić, P. Cvjetko, V. Roje, B. Pevalek-Kozlina, and M. Pavlica. 2009. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany 91: 166–172.
Benaroya, B.O., V. Tzin, E. Tel-Or, and E. Zamski. 2004. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiology and Biochemistry 42: 639–645.
Bennicelli, R., Z. Stezpniewska, A. Banach, K. Szajnocha, and J. Ostrowski. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55: 141–146.
Boulé, K.M., J.A.F. Vicente, C. Nabais, M.N.V. Prasad, and H. Freitas. 2009. Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology 91: 1–9.
Boyd, C.E. 1970. Vascular aquatic plants for mineral nutrient removal from pollutant water. Economic Botany 24: 95–103.
Brook, R.R., and B.H. Robinson. 1998. Aquatic phytoremediation by accumulator plants. In Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, ed. Brook, R.R, 203–226. Wallingford, UK: CABI International.
Carrapiço, F. 2010. Azolla as a superorganism. Its implication in symbiotic studies. In Symbioses and stress, ed. J. Seckbach and M. Grube, 227–241. Berlin: Springer.
Central Pollution Control Board. 2008. Status of water quality in India 2007, New Delhi, India: CPCB.
Chambers, P.A., P. Lacoul, K.J. Murphy, and S.M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.
Chang, J.S., I.H. Yoon, and K.-W. Kim. 2009. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecological Indicators 9: 1275–1279.
Cheng, S. 2003. Heavy metals in plants and phytoremediation. Environmental Science and Pollution Research 10: 335–340.
Cobbet, C., and P. Goldsbrough. 2002. Phytochelatins and metallothioneins: Role in heavy metal detoxification and homeostasis. Annual Reviews in Plant Biology 53: 159–182.
Cohen-Shoel, N., Z. Barkay, D. Ilzycer, I. Gilath, and E. Tel-Or. 2002. Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution 135: 93–104.
Conwell Jr., D.A., J. Zoltek, C.D. Patrinely, T.S. Furman, and J.I. Kim. 1977. Nutrient removal by water hyacinths. Journal of the Water Pollution Control Federation 49: 57–65.
Dai, L.P., Z.T. Xiong, Y. Huang, and M.J. Li. 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environmental Toxicology 21: 505–512.
Dai, L.P., Z.T. Xiong, and H.H. Ma. 2009. Effects of cadmium on nitrogen metabolism in Azolla imbricata-Anabaena azollae symbiosis. Acta Ecologica Sinica 29: 1629–1638.
Dhir, B., P. Sharmila, and P.P. Saradhi. 2009a. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology 39: 754–781.
Dhir, B., P. Sharmila, P. Pardha Saradhi, and S.A. Nasim. 2009b. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicology and Environmental Safety 72: 1790–1797.
Dhote, S., and S. Dixit. 2009. Water quality improvement through macrophytes- a review. Environmental Monitoring and Assessment 152: 149–153.
Eccles, H. 1995. Removal of heavy metals from effluent streams - why select a biological process? International Biodeterioration and Biodegradation 35: 5–16.
EPA (Environmental Protection Agency). 1997. Electrokinetic laboratory and field processes applicable to radioactive and hazardous mixed waste in soil and ground water. EPA 402/R-97/006. Washington, DC.
Espinoza-Qui˜nones, F.R., A.N. Módenes, L.P. Thomé, S.M. Palácio, D.E.G. Trigueros, A.P. Oliveira, and N. Szymanski. 2009. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chemical Engineering Journal 150: 316–322.
Firdaus-e-Bareen, and S. Khilji. 2008. Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal of Biotechnology 18: 3314–3320.
Flathman, P.E., and G.R. Lanza. 1998. Phytoremediation: current views on an emerging green technology. Journal of Soil Contamination 7: 415–432.
Fogarty, R.V., P. Dostalek, M. Patzak, J. Votruba, E. Tel-Or, and J.M. Tobin. 1999. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Techniques 13: 533–538.
Gaumat, S., K. Mishra, U.N. Rai, and U. Baipal. 2008. Ultramorphological variation in Azolla pinnata R.Br. under single and mixed metal treatment with lead and iron. Phytomorphology 58: 111–116.
Gaur, J.P., N. Noraho, and Y.S. Chauhan. 1994. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany 94: 183–192.
Hoang Ha, N.T.H., M. Sakakibara, S. Sano, R.S. Hori, and K. Sera. 2009. The potential of Eleocharis acicularis for phytoremediation: Case study at an abandoned mine site. Clean Soil, Air, Water 37: 203–208.
Hu, C., L. Zhang, D. Hamilton, W. Zhou, T. Yang, and D. Zhu. 2007. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579: 211–218.
Jafari, N., Z. Senobari, and R.K. Pathak. 2010. Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), Cu (II) and Zn(II). Ecology, Environment and Conservation 16: 443–449.
Jain, S.K., P. Vasudevan, and N.K. Jha. 1989. Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes 28: 115–126.
Jain, S.K., P. Vasudevan, and N.K. Jha. 1990. Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research 24: 177–183.
Kar, P.P., and D.P. Singh. 2003. Effect of some heavy metals on sporulation and growth of Azolla caroliniana and Azolla microphylla. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 5: 105–114.
Kathiresan, R.M. 2007. Integration of elements of a farming system for sustainable weed and pest management in the tropics. Crop Protection 26: 424–429.
Khellaf, N., and M. Zerdaoui. 2009. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology 100: 6137–6140.
Khosravi, M., R. Rakhshaee, and M.T. Ganji. 2005. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd (II), Ni (II) and Zn (II) from aqueous solution in batch and fixed-bed reactor. Journal of Hazardous Materials B127: 228–237.
Lokeshwari, H., and G.T. Chandrappa. 2007. Effects of heavy metal contamination from anthropogenic sources on Dasarahalli tank, India. Lakes and Reservoirs: Research and Management 12: 121–128.
Maleva, M.G., G.F. Nekrasova, P. Malec, M.N.V. Prasad, and K. Strzałka. 2009. Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77: 392–398.
Mallick, N., Shardendu, and L.C. Rai. 1996. Removal of heavy metals by two free floating aquatic macrophytes. Biomedical and Environmental Sciences 9: 399–407.
Marques, A.P.G.C., A.O.S.S. Rangel, and P.M.L. Castro. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39: 622–654.
Mashkani, S.G., and P.T.M. Ghazvini. 2009. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of Biosorption. Bioresource Technology 100: 1915–1921.
Mishra, K.K., U.N. Rai, and O. Prakash. 2007. Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environmental Monitoring and Assessment 130: 237–243.
Mishra, S., S. Srivastava, R.D. Tripathi, and P.K. Trivedi. 2007. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology 86: 205–215.
Mishra, S., S. Srivastava, R.D. Tripathi, S. Dwivedi, and M.K. Shukla. 2008. Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environmental Toxicology 23: 294–301.
Mishra, V.K., and B.D. Tripathi. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology 99: 7091–7097.
Mishra, V.K., A.R. Upadhyay, S.K. Pandey, and B.D. Tripathi. 2008. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment 141: 49–58.
Mishra, V.K., B.D. Tripathi, and K.H. Kim. 2009. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials 172: 749–754.
Mkandawire, M., B. Taubert, and E.G. Dudel. 2004. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation 6: 347–362.
Molisani, M.M., R. Rocha, W. Machado, R.C. Barreto, and L.D. Lacerda. 2006. Mercury contents in aquatic macrophytes from two reservoirs in the paraíba do sul:guandú river system, Se Brazil. Brazilian Journal of Biology 66: 101–107.
Monferran, M.V., J.A. Sanchez Agudo, M.L. Pignata, and D.A. Wunderlin. 2009. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environmental Pollution 157: 2570–2576.
Mufarrege, M.M., H.A. Hadad, and M.A. Maine. 2010. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Archives of Environmental Contamination and Toxicology 58: 53–61.
Nedumaran, B., and M. Velan. 2008. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: Batch and continuous study. Journal of Environmental Science and Engineering 50: 23–28.
Olguín, E.J., E. Hernández, and I. Ramos. 2002. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnologica 22: 121–131.
Pabby, A., S. Dua, and A.S. Ahluwalia. 2000. Changes in nitrogen metabolism of Azolla microphylla and Azolla pinnata on supplementation of nitrogen fertilizer. Phykos 39: 51–59.
Pabby, A., S. Dua, and A.S. Ahluwalia. 2001. Changes in ammonia-assimilating enzymes in response to different nitrate levels in Azolla pinnata and A. microphylla. Journal of Plant Physiology 158: 899–903.
Pabby, A., A.S. Ahluwalia, and S. Dua. 2002a. Growth response and changes in ammona-assimilating enzymes at elevated temperatures in Azolla pinnata R. Br. and A. microphylla Kaul. Indian Journal of Microbiology 42: 315–318.
Pabby, A., A.S. Ahluwalia, and S. Dua. 2002b. Temperature stress induced changes in growth and biochemical constituents of Azolla microphylla and Azolla pinnata. Indian Journal of Plant Physiology 7: 140–145.
Pabby, A., A.S. Ahluwalia, and S. Dua. 2003a. Current status of Azolla taxonomy. In Phycology: Principles, Processes and Applications, ed. A.S. Ahluwalia, 48–63. India: Daya Publishers.
Pabby, A., R. Prasanna, and P.K. Singh. 2003b. Azolla-Anabaena symbiosis- from traditional agriculture to biotechnology. Indian Journal of Biotechnology 2: 26–37.
Pabby, A., R. Prasanna, S. Nayak, and P.K. Singh. 2003c. Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Plant Physiology and Biochemistry 41: 73–79.
Pabby, A., R. Prasanna, and P.K. Singh. 2004a. Morphological characterization of cultured and freshly separated cyanobionts (Nostocals, Cyanophyta) from Azolla species. Acta Botanica Hungarica 46: 211–223.
Pabby, A., R. Prasanna, and P.K. Singh. 2004b. Biological significance of Azolla and its utilization in agriculture. Proceedings of Indian National Science Academy B 70: 301–335.
Padmesh, T.V.N., K. Vijayraghavan, G. Sekaran, and M. Velan. 2006. Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chemical Engineering Journal 122: 55–63.
Paiva, B.L., J.G. de Oliveira, R.A. Azevedo, D.R. Ribeiro, M.G. da Silva, and A.P. Vitória. 2009. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environmental and Experimental Botany 65: 403–409.
Pietrobelli, J.M.T. A.N. de Módenes, M.R.F. Fagundes-Klen, and F.R. Espinoza-Quiñones. 2009. Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water Air Soil Pollution 202: 385–392.
Prasad, M.N.V., and H. Freitas. 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6: 285–321.
Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, C. Okumura, and M.M. Rahman. 2007. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 69: 493–499.
Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, and M.M. Rahman. 2008. Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicology and Environmental Safety 70: 311–318.
Rai, L.C., J.P. Gaur, and H.D. Kumar. 1981. Phycology and heavy metal pollution. Biological Reviews of the Cambridge Philosophical Society 56: 99–151.
Rai, P.K. 2008. Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Intentional Journal of Phytoremediation 10: 430–439.
Rai, P.K. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology 39: 697–753.
Rai, P.K. 2010a. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation. International Journal of Phytoremediation 12: 226–242.
Rai, P.K. 2010b. Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation 12: 96–104.
Rai, P.K., and B.D. Tripathi. 2009. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment 148: 75–84.
Rakhshaee, R., M. Khosravi, and M.T. Masoud Taghi Ganji. 2006. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. Journal of Hazardous Materials B134: 120–129.
Rascio, N., and F. Navari-Izzo. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180: 169–181.
Sánchez-Chardi, A., C. Peñarroja-Matutano, M. Borrás, and J. Nadal. 2009. Bioaccumulation of metals and effects of a landfill in small mammals Part III: Structural alterations. Environmental Research 109: 960–967.
Sánchez-Galván, G., O. Monroy, J. Gómez, and E.J. Olguín. 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil pollution 194: 77–90.
Sánchez-Viveros, G., D. Gonzalez, A. Alacon, and R. Ferrera-Cerrato. 2010. Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. caroliniana. International Journal of Agriculture and Biology 12: 365–368.
Sanyahumbi, D., J.R. Duncan, M. Zhao, and R. van Hille. 1998. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides. Biotechnology Letters 20: 745–747.
Sarkar, A., and S. Jana. 1986. Heavy metal pollutant tolerance of Azolla pinnata. Water, Air, and Soil pollution 27: 15–18.
Sasmaz, A., E. Obek, and H. Hasar. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering 33: 278–284.
Saygideger, S., O. Gulnaz, E.S. Istifli, and N. Yucel. 2005. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L. effect of physicochemical environment. Journal of Hazardous Materials 126: 96–104.
Schor-Fumbarov, T., P.B. Goldsbrough, Z. Adam, and E. Tel-Or. 2005. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223: 69–76.
Schwarz, A., and I. Haves. 1997. Effect of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquatic Botany 56: 169–181.
Seidal, K. 1976. Macrophytes and water purification. In Biological control for water pollution, ed. J. Tourbier, and R.W. Pierson, 109–121. Pennsylvania: Pennsylvania University Press.
Sela, M., E. Tel-Or, F. Eberhardt, and A. Huttermann. 1988. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiology 88: 30–36.
Sela, M., J. Garty, and E. Tel-Or. 1989. The accumulation and effect of heavy metal on the water fern Azolla filiculoides. New Phytologist 112: 7–12.
Sela, M., E. Fritz, A. Huttermann, and E. Tel-Or. 1990. Studies on cadmium localization in the water fern Azolla. Physiologia Plantarum 79: 547–553.
Serag, M.S., A. El-Hakeem, M. Badway, and M.A. Mousa. 2000. On the ecology of Azolla filiculoides Lam. in Damietta District, Egypt. Limnologica 30: 73–81.
Shah, K., and J.M. Nongkynrih. 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum 51: 618–634.
Shi, G.X., Q.S. Xu, K.B. Xie, N. Xu, X.L. Zhang, X.M. Zeng, H.W. Zhou, and L. Zhu. 2003. Physiology and ultrastructure of Azolla imbricata as affected by Hg2+ and Cd2+ toxicity. Acta Botanica Sinica 45: 437–444.
Sivaci, E.R., A. Sivaci, and M. Sokmen. 2004. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56: 1043–1048.
Siwela, A.H., C.B. Nyathi, and Y.S. Naik. 2009. Metal accumulation and antioxidant enzyme activity in C. gariepinus, Catfish, and O. mossambicus, tilapia, collected from lower Mguza and Wright Dams, Zimbabwe. Bulletin of Environmental Contamination and Toxicology 83: 648–651.
Skinner, K., N. Wright, and E.P. Goff. 2007. Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution 145: 234–237.
Sood, A., and A.S. Ahluwalia. 2009. Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern Journal 26: 166–178.
Sood, A., R. Prasanna, and P.K. Singh. 2007. Utilization of SDS-PAGE of whole cell proteins for characterization of Azolla species. Annales Botanici Fennici 44: 283–286.
Sood, A., R. Prasanna, and P.K. Singh. 2008a. Fingerprinting of freshly separated and cultured cyanobionts from different Azolla species using morphological and molecular markers. Aquatic Botany 88: 142–147.
Sood, A., R. Prasanna, B.M. Prasanna, and P.K. Singh. 2008b. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla. Folia Microbiologica 53: 35–43.
Sood, A., S. Pabbi, and P.L. Uniyal. 2011. Effect of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla Kual. Russian Journal of Plant Physiology 58: 667–673.
Srivastava, J., A. Gupta, and H. Chandra. 2008. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Biotechnology 7: 255–266.
Stepniewska, Z., R.P. Bennicelli, T.I. Balakhnina, K. Szajnocha, A. Banach, and A. Woliñska. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. International Agrophysics 19: 251–255.
Stewart, K.K. 1970. Nutrient removal potential of various aquatic plants. Hyacinth Control Journal 8: 34–35.
Suresh, B., and G.A. Ravishankar. 2004. Phytoremediation: A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology 24: 97–124.
Umali, L.J., J.R. Duncan, and J.E. Burgess. 2006. Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnology Letters 28: 45–49.
Upadhyay, A.R., V.K. Mishra, S.K. Pandey, and B.D. Tripathi. 2007. Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering 30: 9–15.
Uysal, Y., and F. Taner. 2009. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. International Journal of Phytoremediation 11: 591–608.
Verma, V.K., S. Tewari, and J.P.N. Rai. 2008. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology 99: 1932–1938.
Volesky, B. 2001. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 59: 203–216.
Wagnar, G.M. 1997. Azolla: A review on its biology and utilization. Botanical Reviews 63: 1–26.
Wolverton, B.C., and M.M. Mckown. 1976. Water hyacinth for removal of phenols from polluted waters. Aquatic Botany 30: 29–37.
Wolverton, B.C., and R.C. McDonald. 1976. Don’t waste waterweeds. New Scientist 71: 318–320.
Wooten, J.W., and D.J. Dodd. 1976. Growth of water hyacinth in treated sewage effluent. Economic Botany 30: 29–37.
Yadav, S.K., A.A. Juwarkar, G.P. Kumar, P.R. Thawale, S.K. Singh, and T. Chakrabarti. 2009. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology 100: 4616–4622.
Zhang, X., A.J. Lin, F.J. Zhao, G.Z. Xu, G.L. Duan, and Y.G. Zhu. 2008. Arsenic accumulation by aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution 156: 1149–1155.
Zhang, X., F.J. Zhao, Q. Huang, P.N. Williams, G.X. Sun, and Y.G. Zhu. 2009. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist 182: 421–428.
Zhao, F.J., R.E. Hamon, E. Lombi, M.J. McLaughlin, and S.P. McGrath. 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulators Thalspi caerulenscens. Journal of Experimental Botany 53: 535–543.
Zhao, M., and J.R. Duncan. 1997. Batch removal of sexivalent chromium by Azolla filiculoides. Biotechnology and Applied Biochemistry 26: 179–182.
Zhao, M., and J.R. Duncan. 1998a. Bed-depth-service-time analysis on column removal of Zn2+ using Azolla filiculoides. Biotechnology Letters 20: 37–39.
Zhao, M., and J.R. Duncan. 1998b. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochemistry 33: 249–255.
Zhao, M., J.R. Duncan, and R.P. Van Hille. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Research 33: 1516–1522.
Zhou, Q., J. Zhang, J. Fu, J. Shi, and G. Jiang. 2008. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.
Acknowledgments
The authors thank Chairpersons to Department of Botany, University of Delhi, Delhi and Panjab University, Chandigarh, India for providing financial assistance and research facilities, respectively.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sood, A., Uniyal, P.L., Prasanna, R. et al. Phytoremediation Potential of Aquatic Macrophyte, Azolla . AMBIO 41, 122–137 (2012). https://doi.org/10.1007/s13280-011-0159-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13280-011-0159-z