, Volume 41, Issue 2, pp 122–137 | Cite as

Phytoremediation Potential of Aquatic Macrophyte, Azolla

  • Anjuli SoodEmail author
  • Perm L. Uniyal
  • Radha Prasanna
  • Amrik S. Ahluwalia
Review Paper


Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.


Azolla Bioaccumulation Biosorption Phytoremediation Toxicity 



The authors thank Chairpersons to Department of Botany, University of Delhi, Delhi and Panjab University, Chandigarh, India for providing financial assistance and research facilities, respectively.


  1. Ahluwalia, A.S., and A. Pabby. 2002. Azolla: A green gold mine with diversified applications. Indian Fern Journal 19: 1–9.Google Scholar
  2. Amtmann, A., and P. Armenguad. 2009. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Current Opinion in Plant Biology 12: 275–283.Google Scholar
  3. Antunes, A.P.M., G.M. Watkins, and J.R. Duncan. 2001. Batch studies on the removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnology Letters 23: 249–251.Google Scholar
  4. Aravind, P., M.N.V. Prasad, P. Malec, A. Waloszek, and K. Strzałka. 2009. Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. Journal of Trace Elements in Medicine and Biology 23: 50–60.Google Scholar
  5. Arora, A., and S. Saxena. 2005. Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluent. Biomass Bioenergy 29: 60–64.Google Scholar
  6. Arora, A., A. Sood, and P.K. Singh. 2004. Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology 3: 302–304.Google Scholar
  7. Arora, A., S. Saxena, and D.K. Sharma. 2006. Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology 22: 97–100.Google Scholar
  8. Arora, M., K. Kiran, S. Rani, A. Rani, B. Kaur, and N. Mittal. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry 111: 811–815.Google Scholar
  9. Assuncao, A.G.L., P. Bleeker, W.M. Ten Bookum, R. Vooijs, and H. Schat. 2008. Intraspecific variation in metal preference patterns for hyperaccumulation in Thalspi caerulenscens: Evidence for binary metal exposures. Plant and Soil 303: 289–299.Google Scholar
  10. Babić, M., S. Radić, P. Cvjetko, V. Roje, B. Pevalek-Kozlina, and M. Pavlica. 2009. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany 91: 166–172.Google Scholar
  11. Benaroya, B.O., V. Tzin, E. Tel-Or, and E. Zamski. 2004. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiology and Biochemistry 42: 639–645.Google Scholar
  12. Bennicelli, R., Z. Stezpniewska, A. Banach, K. Szajnocha, and J. Ostrowski. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55: 141–146.Google Scholar
  13. Boulé, K.M., J.A.F. Vicente, C. Nabais, M.N.V. Prasad, and H. Freitas. 2009. Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology 91: 1–9.Google Scholar
  14. Boyd, C.E. 1970. Vascular aquatic plants for mineral nutrient removal from pollutant water. Economic Botany 24: 95–103.Google Scholar
  15. Brook, R.R., and B.H. Robinson. 1998. Aquatic phytoremediation by accumulator plants. In Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, ed. Brook, R.R, 203–226. Wallingford, UK: CABI International.Google Scholar
  16. Carrapiço, F. 2010. Azolla as a superorganism. Its implication in symbiotic studies. In Symbioses and stress, ed. J. Seckbach and M. Grube, 227–241. Berlin: Springer.Google Scholar
  17. Central Pollution Control Board. 2008. Status of water quality in India 2007, New Delhi, India: CPCB.Google Scholar
  18. Chambers, P.A., P. Lacoul, K.J. Murphy, and S.M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.Google Scholar
  19. Chang, J.S., I.H. Yoon, and K.-W. Kim. 2009. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecological Indicators 9: 1275–1279.Google Scholar
  20. Cheng, S. 2003. Heavy metals in plants and phytoremediation. Environmental Science and Pollution Research 10: 335–340.Google Scholar
  21. Cobbet, C., and P. Goldsbrough. 2002. Phytochelatins and metallothioneins: Role in heavy metal detoxification and homeostasis. Annual Reviews in Plant Biology 53: 159–182.Google Scholar
  22. Cohen-Shoel, N., Z. Barkay, D. Ilzycer, I. Gilath, and E. Tel-Or. 2002. Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution 135: 93–104.Google Scholar
  23. Conwell Jr., D.A., J. Zoltek, C.D. Patrinely, T.S. Furman, and J.I. Kim. 1977. Nutrient removal by water hyacinths. Journal of the Water Pollution Control Federation 49: 57–65.Google Scholar
  24. Dai, L.P., Z.T. Xiong, Y. Huang, and M.J. Li. 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environmental Toxicology 21: 505–512.Google Scholar
  25. Dai, L.P., Z.T. Xiong, and H.H. Ma. 2009. Effects of cadmium on nitrogen metabolism in Azolla imbricata-Anabaena azollae symbiosis. Acta Ecologica Sinica 29: 1629–1638.Google Scholar
  26. Dhir, B., P. Sharmila, and P.P. Saradhi. 2009a. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology 39: 754–781.Google Scholar
  27. Dhir, B., P. Sharmila, P. Pardha Saradhi, and S.A. Nasim. 2009b. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicology and Environmental Safety 72: 1790–1797.Google Scholar
  28. Dhote, S., and S. Dixit. 2009. Water quality improvement through macrophytes- a review. Environmental Monitoring and Assessment 152: 149–153.Google Scholar
  29. Eccles, H. 1995. Removal of heavy metals from effluent streams - why select a biological process? International Biodeterioration and Biodegradation 35: 5–16.Google Scholar
  30. EPA (Environmental Protection Agency). 1997. Electrokinetic laboratory and field processes applicable to radioactive and hazardous mixed waste in soil and ground water. EPA 402/R-97/006. Washington, DC.Google Scholar
  31. Espinoza-Qui˜nones, F.R., A.N. Módenes, L.P. Thomé, S.M. Palácio, D.E.G. Trigueros, A.P. Oliveira, and N. Szymanski. 2009. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chemical Engineering Journal 150: 316–322.Google Scholar
  32. Firdaus-e-Bareen, and S. Khilji. 2008. Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal of Biotechnology 18: 3314–3320.Google Scholar
  33. Flathman, P.E., and G.R. Lanza. 1998. Phytoremediation: current views on an emerging green technology. Journal of Soil Contamination 7: 415–432.Google Scholar
  34. Fogarty, R.V., P. Dostalek, M. Patzak, J. Votruba, E. Tel-Or, and J.M. Tobin. 1999. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Techniques 13: 533–538.Google Scholar
  35. Gaumat, S., K. Mishra, U.N. Rai, and U. Baipal. 2008. Ultramorphological variation in Azolla pinnata R.Br. under single and mixed metal treatment with lead and iron. Phytomorphology 58: 111–116.Google Scholar
  36. Gaur, J.P., N. Noraho, and Y.S. Chauhan. 1994. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany 94: 183–192.Google Scholar
  37. Hoang Ha, N.T.H., M. Sakakibara, S. Sano, R.S. Hori, and K. Sera. 2009. The potential of Eleocharis acicularis for phytoremediation: Case study at an abandoned mine site. Clean Soil, Air, Water 37: 203–208.Google Scholar
  38. Hu, C., L. Zhang, D. Hamilton, W. Zhou, T. Yang, and D. Zhu. 2007. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579: 211–218.Google Scholar
  39. Jafari, N., Z. Senobari, and R.K. Pathak. 2010. Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), Cu (II) and Zn(II). Ecology, Environment and Conservation 16: 443–449.Google Scholar
  40. Jain, S.K., P. Vasudevan, and N.K. Jha. 1989. Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes 28: 115–126.Google Scholar
  41. Jain, S.K., P. Vasudevan, and N.K. Jha. 1990. Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Research 24: 177–183.Google Scholar
  42. Kar, P.P., and D.P. Singh. 2003. Effect of some heavy metals on sporulation and growth of Azolla caroliniana and Azolla microphylla. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 5: 105–114.Google Scholar
  43. Kathiresan, R.M. 2007. Integration of elements of a farming system for sustainable weed and pest management in the tropics. Crop Protection 26: 424–429.Google Scholar
  44. Khellaf, N., and M. Zerdaoui. 2009. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology 100: 6137–6140.Google Scholar
  45. Khosravi, M., R. Rakhshaee, and M.T. Ganji. 2005. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd (II), Ni (II) and Zn (II) from aqueous solution in batch and fixed-bed reactor. Journal of Hazardous Materials B127: 228–237.Google Scholar
  46. Lokeshwari, H., and G.T. Chandrappa. 2007. Effects of heavy metal contamination from anthropogenic sources on Dasarahalli tank, India. Lakes and Reservoirs: Research and Management 12: 121–128.Google Scholar
  47. Maleva, M.G., G.F. Nekrasova, P. Malec, M.N.V. Prasad, and K. Strzałka. 2009. Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77: 392–398.Google Scholar
  48. Mallick, N., Shardendu, and L.C. Rai. 1996. Removal of heavy metals by two free floating aquatic macrophytes. Biomedical and Environmental Sciences 9: 399–407.Google Scholar
  49. Marques, A.P.G.C., A.O.S.S. Rangel, and P.M.L. Castro. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39: 622–654.Google Scholar
  50. Mashkani, S.G., and P.T.M. Ghazvini. 2009. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of Biosorption. Bioresource Technology 100: 1915–1921.Google Scholar
  51. Mishra, K.K., U.N. Rai, and O. Prakash. 2007. Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environmental Monitoring and Assessment 130: 237–243.Google Scholar
  52. Mishra, S., S. Srivastava, R.D. Tripathi, and P.K. Trivedi. 2007. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology 86: 205–215.Google Scholar
  53. Mishra, S., S. Srivastava, R.D. Tripathi, S. Dwivedi, and M.K. Shukla. 2008. Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environmental Toxicology 23: 294–301.Google Scholar
  54. Mishra, V.K., and B.D. Tripathi. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology 99: 7091–7097.Google Scholar
  55. Mishra, V.K., A.R. Upadhyay, S.K. Pandey, and B.D. Tripathi. 2008. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment 141: 49–58.Google Scholar
  56. Mishra, V.K., B.D. Tripathi, and K.H. Kim. 2009. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials 172: 749–754.Google Scholar
  57. Mkandawire, M., B. Taubert, and E.G. Dudel. 2004. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation 6: 347–362.Google Scholar
  58. Molisani, M.M., R. Rocha, W. Machado, R.C. Barreto, and L.D. Lacerda. 2006. Mercury contents in aquatic macrophytes from two reservoirs in the paraíba do sul:guandú river system, Se Brazil. Brazilian Journal of Biology 66: 101–107.Google Scholar
  59. Monferran, M.V., J.A. Sanchez Agudo, M.L. Pignata, and D.A. Wunderlin. 2009. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environmental Pollution 157: 2570–2576.Google Scholar
  60. Mufarrege, M.M., H.A. Hadad, and M.A. Maine. 2010. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Archives of Environmental Contamination and Toxicology 58: 53–61.Google Scholar
  61. Nedumaran, B., and M. Velan. 2008. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: Batch and continuous study. Journal of Environmental Science and Engineering 50: 23–28.Google Scholar
  62. Olguín, E.J., E. Hernández, and I. Ramos. 2002. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnologica 22: 121–131.Google Scholar
  63. Pabby, A., S. Dua, and A.S. Ahluwalia. 2000. Changes in nitrogen metabolism of Azolla microphylla and Azolla pinnata on supplementation of nitrogen fertilizer. Phykos 39: 51–59.Google Scholar
  64. Pabby, A., S. Dua, and A.S. Ahluwalia. 2001. Changes in ammonia-assimilating enzymes in response to different nitrate levels in Azolla pinnata and A. microphylla. Journal of Plant Physiology 158: 899–903.Google Scholar
  65. Pabby, A., A.S. Ahluwalia, and S. Dua. 2002a. Growth response and changes in ammona-assimilating enzymes at elevated temperatures in Azolla pinnata R. Br. and A. microphylla Kaul. Indian Journal of Microbiology 42: 315–318.Google Scholar
  66. Pabby, A., A.S. Ahluwalia, and S. Dua. 2002b. Temperature stress induced changes in growth and biochemical constituents of Azolla microphylla and Azolla pinnata. Indian Journal of Plant Physiology 7: 140–145.Google Scholar
  67. Pabby, A., A.S. Ahluwalia, and S. Dua. 2003a. Current status of Azolla taxonomy. In Phycology: Principles, Processes and Applications, ed. A.S. Ahluwalia, 48–63. India: Daya Publishers.Google Scholar
  68. Pabby, A., R. Prasanna, and P.K. Singh. 2003b. Azolla-Anabaena symbiosis- from traditional agriculture to biotechnology. Indian Journal of Biotechnology 2: 26–37.Google Scholar
  69. Pabby, A., R. Prasanna, S. Nayak, and P.K. Singh. 2003c. Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Plant Physiology and Biochemistry 41: 73–79.Google Scholar
  70. Pabby, A., R. Prasanna, and P.K. Singh. 2004a. Morphological characterization of cultured and freshly separated cyanobionts (Nostocals, Cyanophyta) from Azolla species. Acta Botanica Hungarica 46: 211–223.Google Scholar
  71. Pabby, A., R. Prasanna, and P.K. Singh. 2004b. Biological significance of Azolla and its utilization in agriculture. Proceedings of Indian National Science Academy B 70: 301–335.Google Scholar
  72. Padmesh, T.V.N., K. Vijayraghavan, G. Sekaran, and M. Velan. 2006. Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chemical Engineering Journal 122: 55–63.Google Scholar
  73. Paiva, B.L., J.G. de Oliveira, R.A. Azevedo, D.R. Ribeiro, M.G. da Silva, and A.P. Vitória. 2009. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environmental and Experimental Botany 65: 403–409.Google Scholar
  74. Pietrobelli, J.M.T. A.N. de Módenes, M.R.F. Fagundes-Klen, and F.R. Espinoza-Quiñones. 2009. Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water Air Soil Pollution 202: 385–392.Google Scholar
  75. Prasad, M.N.V., and H. Freitas. 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6: 285–321.Google Scholar
  76. Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, C. Okumura, and M.M. Rahman. 2007. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 69: 493–499.Google Scholar
  77. Rahman, M.A., H. Hasegawa, K. Ueda, T. Maki, and M.M. Rahman. 2008. Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicology and Environmental Safety 70: 311–318.Google Scholar
  78. Rai, L.C., J.P. Gaur, and H.D. Kumar. 1981. Phycology and heavy metal pollution. Biological Reviews of the Cambridge Philosophical Society 56: 99–151.Google Scholar
  79. Rai, P.K. 2008. Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Intentional Journal of Phytoremediation 10: 430–439.Google Scholar
  80. Rai, P.K. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology 39: 697–753.Google Scholar
  81. Rai, P.K. 2010a. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation. International Journal of Phytoremediation 12: 226–242.Google Scholar
  82. Rai, P.K. 2010b. Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation 12: 96–104.Google Scholar
  83. Rai, P.K., and B.D. Tripathi. 2009. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment 148: 75–84.Google Scholar
  84. Rakhshaee, R., M. Khosravi, and M.T. Masoud Taghi Ganji. 2006. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. Journal of Hazardous Materials B134: 120–129.Google Scholar
  85. Rascio, N., and F. Navari-Izzo. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180: 169–181.Google Scholar
  86. Sánchez-Chardi, A., C. Peñarroja-Matutano, M. Borrás, and J. Nadal. 2009. Bioaccumulation of metals and effects of a landfill in small mammals Part III: Structural alterations. Environmental Research 109: 960–967.Google Scholar
  87. Sánchez-Galván, G., O. Monroy, J. Gómez, and E.J. Olguín. 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil pollution 194: 77–90.Google Scholar
  88. Sánchez-Viveros, G., D. Gonzalez, A. Alacon, and R. Ferrera-Cerrato. 2010. Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. caroliniana. International Journal of Agriculture and Biology 12: 365–368.Google Scholar
  89. Sanyahumbi, D., J.R. Duncan, M. Zhao, and R. van Hille. 1998. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides. Biotechnology Letters 20: 745–747.Google Scholar
  90. Sarkar, A., and S. Jana. 1986. Heavy metal pollutant tolerance of Azolla pinnata. Water, Air, and Soil pollution 27: 15–18.Google Scholar
  91. Sasmaz, A., E. Obek, and H. Hasar. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering 33: 278–284.Google Scholar
  92. Saygideger, S., O. Gulnaz, E.S. Istifli, and N. Yucel. 2005. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L. effect of physicochemical environment. Journal of Hazardous Materials 126: 96–104.Google Scholar
  93. Schor-Fumbarov, T., P.B. Goldsbrough, Z. Adam, and E. Tel-Or. 2005. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223: 69–76.Google Scholar
  94. Schwarz, A., and I. Haves. 1997. Effect of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquatic Botany 56: 169–181.Google Scholar
  95. Seidal, K. 1976. Macrophytes and water purification. In Biological control for water pollution, ed. J. Tourbier, and R.W. Pierson, 109–121. Pennsylvania: Pennsylvania University Press.Google Scholar
  96. Sela, M., E. Tel-Or, F. Eberhardt, and A. Huttermann. 1988. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiology 88: 30–36.Google Scholar
  97. Sela, M., J. Garty, and E. Tel-Or. 1989. The accumulation and effect of heavy metal on the water fern Azolla filiculoides. New Phytologist 112: 7–12.Google Scholar
  98. Sela, M., E. Fritz, A. Huttermann, and E. Tel-Or. 1990. Studies on cadmium localization in the water fern Azolla. Physiologia Plantarum 79: 547–553.Google Scholar
  99. Serag, M.S., A. El-Hakeem, M. Badway, and M.A. Mousa. 2000. On the ecology of Azolla filiculoides Lam. in Damietta District, Egypt. Limnologica 30: 73–81.Google Scholar
  100. Shah, K., and J.M. Nongkynrih. 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum 51: 618–634.Google Scholar
  101. Shi, G.X., Q.S. Xu, K.B. Xie, N. Xu, X.L. Zhang, X.M. Zeng, H.W. Zhou, and L. Zhu. 2003. Physiology and ultrastructure of Azolla imbricata as affected by Hg2+ and Cd2+ toxicity. Acta Botanica Sinica 45: 437–444.Google Scholar
  102. Sivaci, E.R., A. Sivaci, and M. Sokmen. 2004. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56: 1043–1048.Google Scholar
  103. Siwela, A.H., C.B. Nyathi, and Y.S. Naik. 2009. Metal accumulation and antioxidant enzyme activity in C. gariepinus, Catfish, and O. mossambicus, tilapia, collected from lower Mguza and Wright Dams, Zimbabwe. Bulletin of Environmental Contamination and Toxicology 83: 648–651.Google Scholar
  104. Skinner, K., N. Wright, and E.P. Goff. 2007. Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution 145: 234–237.Google Scholar
  105. Sood, A., and A.S. Ahluwalia. 2009. Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern Journal 26: 166–178.Google Scholar
  106. Sood, A., R. Prasanna, and P.K. Singh. 2007. Utilization of SDS-PAGE of whole cell proteins for characterization of Azolla species. Annales Botanici Fennici 44: 283–286.Google Scholar
  107. Sood, A., R. Prasanna, and P.K. Singh. 2008a. Fingerprinting of freshly separated and cultured cyanobionts from different Azolla species using morphological and molecular markers. Aquatic Botany 88: 142–147.Google Scholar
  108. Sood, A., R. Prasanna, B.M. Prasanna, and P.K. Singh. 2008b. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla. Folia Microbiologica 53: 35–43.Google Scholar
  109. Sood, A., S. Pabbi, and P.L. Uniyal. 2011. Effect of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla Kual. Russian Journal of Plant Physiology 58: 667–673.Google Scholar
  110. Srivastava, J., A. Gupta, and H. Chandra. 2008. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Biotechnology 7: 255–266.Google Scholar
  111. Stepniewska, Z., R.P. Bennicelli, T.I. Balakhnina, K. Szajnocha, A. Banach, and A. Woliñska. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. International Agrophysics 19: 251–255.Google Scholar
  112. Stewart, K.K. 1970. Nutrient removal potential of various aquatic plants. Hyacinth Control Journal 8: 34–35.Google Scholar
  113. Suresh, B., and G.A. Ravishankar. 2004. Phytoremediation: A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology 24: 97–124.Google Scholar
  114. Umali, L.J., J.R. Duncan, and J.E. Burgess. 2006. Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnology Letters 28: 45–49.Google Scholar
  115. Upadhyay, A.R., V.K. Mishra, S.K. Pandey, and B.D. Tripathi. 2007. Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering 30: 9–15.Google Scholar
  116. Uysal, Y., and F. Taner. 2009. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. International Journal of Phytoremediation 11: 591–608.Google Scholar
  117. Verma, V.K., S. Tewari, and J.P.N. Rai. 2008. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology 99: 1932–1938.Google Scholar
  118. Volesky, B. 2001. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy 59: 203–216.Google Scholar
  119. Wagnar, G.M. 1997. Azolla: A review on its biology and utilization. Botanical Reviews 63: 1–26.Google Scholar
  120. Wolverton, B.C., and M.M. Mckown. 1976. Water hyacinth for removal of phenols from polluted waters. Aquatic Botany 30: 29–37.Google Scholar
  121. Wolverton, B.C., and R.C. McDonald. 1976. Don’t waste waterweeds. New Scientist 71: 318–320.Google Scholar
  122. Wooten, J.W., and D.J. Dodd. 1976. Growth of water hyacinth in treated sewage effluent. Economic Botany 30: 29–37.Google Scholar
  123. Yadav, S.K., A.A. Juwarkar, G.P. Kumar, P.R. Thawale, S.K. Singh, and T. Chakrabarti. 2009. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology 100: 4616–4622.Google Scholar
  124. Zhang, X., A.J. Lin, F.J. Zhao, G.Z. Xu, G.L. Duan, and Y.G. Zhu. 2008. Arsenic accumulation by aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution 156: 1149–1155.Google Scholar
  125. Zhang, X., F.J. Zhao, Q. Huang, P.N. Williams, G.X. Sun, and Y.G. Zhu. 2009. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist 182: 421–428.Google Scholar
  126. Zhao, F.J., R.E. Hamon, E. Lombi, M.J. McLaughlin, and S.P. McGrath. 2002. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulators Thalspi caerulenscens. Journal of Experimental Botany 53: 535–543.Google Scholar
  127. Zhao, M., and J.R. Duncan. 1997. Batch removal of sexivalent chromium by Azolla filiculoides. Biotechnology and Applied Biochemistry 26: 179–182.Google Scholar
  128. Zhao, M., and J.R. Duncan. 1998a. Bed-depth-service-time analysis on column removal of Zn2+ using Azolla filiculoides. Biotechnology Letters 20: 37–39.Google Scholar
  129. Zhao, M., and J.R. Duncan. 1998b. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochemistry 33: 249–255.Google Scholar
  130. Zhao, M., J.R. Duncan, and R.P. Van Hille. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Research 33: 1516–1522.Google Scholar
  131. Zhou, Q., J. Zhang, J. Fu, J. Shi, and G. Jiang. 2008. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2011

Authors and Affiliations

  • Anjuli Sood
    • 1
    Email author
  • Perm L. Uniyal
    • 1
  • Radha Prasanna
    • 2
  • Amrik S. Ahluwalia
    • 3
  1. 1.Department of BotanyUniversity of DelhiDelhiIndia
  2. 2.Divison of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  3. 3.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations