Skip to main content
Log in

Predicting the type and target of offensive social media posts in Marathi

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript


The presence of offensive language on social media is very common motivating platforms to invest in strategies to make communities safer. This includes developing robust machine learning systems capable of recognizing offensive content online. Apart from a few notable exceptions, most research on automatic offensive language identification has dealt with English and a few other high-resource languages such as French, German, and Spanish. In this paper, we address this gap by tackling offensive language identification in Marathi, a low-resource Indo-Aryan language spoken in India. We introduce the Marathi Offensive Language Dataset v.2.0 or MOLD 2.0 and present multiple experiments on this dataset. MOLD 2.0 is a much larger version of MOLD with expanded annotation to the levels B (type) and C (target) of the popular OLID taxonomy. MOLD 2.0 is the first hierarchical offensive language dataset compiled for Marathi, thus opening new avenues for research in low-resource Indo-Aryan languages. Finally, we also introduce SeMOLD, a larger dataset annotated following the semi-supervised methods presented in SOLID (Rosenthal et al. in SOLID: a large-scale semi-supervised dataset for offensive language identification. In: Findings of ACL, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Dataset available at:

  2. Tweepy Python library documentation is available on

  3. Marathi FastText embeddings are available on

  4. Marathi word embeddings are available on

  5. DeepOffense is available as a pip package in


  • Alakrot A, Murray L, Nikolov NS (2018) Towards accurate detection of offensive language in online communication in arabic. Procedia Comput Sci 142:315–320

    Article  Google Scholar 

  • Aroyehun ST, Gelbukh A (2018) Aggression detection in social media: using deep neural networks, data augmentation, and pseudo labeling. In: Proceedings of TRAC

  • Basile V, Bosco C, Fersini E, Nozza D, Patti V, Pardo FMR, Rosso P, Sanguinetti M (2019) Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In: Proceedings of SemEval

  • Bassignana E, Basile V, Patti V ( 2018) Hurtlex: a multilingual lexicon of words to hurt. In: Proceedings of CliC-It

  • Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:1

    Google Scholar 

  • Carletta J (1996) Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 22(2):249–254

    Google Scholar 

  • Chiril P, Benamara Zitoune F, Moriceau V, Coulomb-Gully M, Kumar A ( 2019) Multilingual and multitarget hate speech detection in tweets. In: Proceedings of TALN

  • Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Grave E, Ott M, Zettlemoyer L, Stoyanov V (2019) Unsupervised cross-lingual representation learning at scale. In: Proceedings of ACL

  • Çöltekin c (2020) A Corpus of Turkish Offensive Language on Social Media. In: Proceedings of LREC

  • Dadvar M, Trieschnigg D, Ordelman R, de Jong F (2013) Improving dyberbullying detection with user context. In: Proceedings of ECIR,

  • Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL

  • Fišer D, Erjavec T, Ljubešić N (2017) Legal framework, dataset and annotation schema for socially unacceptable on-line discourse practices in Slovene. In: Proceedings ALW

  • Fortuna P, da Silva JR, Wanner L, Nunes S, et al ( 2019) A hierarchically-labeled portuguese hate speech dataset. In: Proceedings of ALW

  • Gaikwad SS, Ranasinghe T, Zampieri M, Homan C ( 2021) Cross-lingual offensive language identification for low resource languages: the case of Marathi. In: Proceedings of RANLP

  • Ghadery E, Moens M-F (2020) LIIR at semeval-2020 task 12: a cross-lingual augmentation approach for multilingual offensive language identification. Proceedings of SemEval

  • Goudjil M, Koudil M, Bedda M, Ghoggali N (2018) A novel active learning method using svm for text classification. Int J Autom Comput 15(3):290–298

    Article  Google Scholar 

  • Hettiarachchi H, Ranasinghe T (2019) Emoji powered capsule network to detect type and target of offensive posts in social media. In: Proceedings of RANLP

  • Kakwani D, Kunchukuttan A, Golla S, NC G, Bhattacharyya A, Khapra MM, Kumar P ( 2020) IndicNLPSuite: monolingual corpora, evaluation benchmarks and pre-trained multilingual language models for Indian languages. In: Findings of the Association for Computational Linguistics: EMNLP 2020

  • Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of EMNLP

  • Kumar R, Ojha AK, Malmasi S, Zampieri M ( 2020) Evaluating aggression identification in social media. In: Proceedings of TRAC

  • Kumar R, Ojha AK, Malmasi S, Zampieri M (2018) Benchmarking aggression identification in social media. In: Proceedings of TRAC

  • Kumar S, Kumar S, Kanojia D, Bhattacharyya,P (2020) A passage to India: Pre-trained word embeddings for Indian languages. In: Proceedings of SLTU

  • Liu P, Li, W, Zou L (2019) NULI at SemEval-2019 task 6: transfer learning for offensive language detection using bidirectional transformers. In: Proceedings of SemEval

  • Malmasi S, Zampieri M ( 2017) Detecting hate speech in social media. In: Proceedings of RANLP

  • Mandl T, Modha S, Majumder P, Patel D, Dave M, Mandlia C, Patel, A (2019) Overview of the Hasoc track at fire 2019: hate speech and offensive content identification in Indo-European languages. In: Proceedings of FIRE

  • Mandl T, Modha S, Kumar M A, Chakravarthi BR ( 2020) Overview of the hasoc track at fire 2020: hate speech and offensive language identification in Tamil, Malayalam, Hindi, English and German. In: Proceedings of FIRE

  • Modha S, Mandl T, Shahi GK, Madhu H, Satapara S, Ranasinghe T, Zampieri M (2021) Overview of the HASOC Subtrack at FIRE 2021: hate speech and offensive content identification in English and Indo-Aryan languages and conversational hate speech. In: Proceedings of FIRE

  • Mubarak H, Rashed A, Darwish K, Samih Y, Abdelali A ( 2021) Arabic offensive language on twitter: analysis and experiments. In: Proceedings of WANLP

  • Pamungkas, EW, Patti V (2019) Cross-domain and cross-lingual abusive language detection: a hybrid approach with deep learning and a multilingual lexicon. In: Proceedings ACL:SRW

  • Pitenis Z, Zampieri M, Ranasinghe T (2020) Offensive language identification in Greek. In: Proceedings of LREC

  • Poletto F, Stranisci M, Sanguinetti M, Patti V, Bosco C ( 2017) Hate speech annotation: analysis of an Italian twitter corpus. In: Proceedings of CLiC-it

  • Ranasinghe T, Zampieri M (2021) An evaluation of multilingual offensive language identification methods for the languages of india. Information 12(8):1

    Article  Google Scholar 

  • Ranasinghe T, Zampieri M ( 2020) Multilingual offensive language identification with cross-lingual embeddings. In: Proceedings of EMNLP

  • Ranasinghe T, Zampieri M (2021) Multilingual offensive language identification for low-resource languages. ACM transactions on asian and low-resource language information processing (TALLIP)

  • Ranasinghe T, Zampieri M ( 2021) MUDES: multilingual detection of offensive spans. In: Proceedings of NAACL

  • Ranasinghe T, Hettiarachchi H ( 2020) BRUMS at SemEval-2020 task 12: transformer based multilingual offensive language identification in social media. In: Proceedings of SemEval

  • Ranasinghe T, Sarkar D, Zampieri M, Ororbia A (2021) WLV-RIT at SemEval-2021 task 5: a neural transformer framework for detecting toxic spans. In: Proceedings of SemEval

  • Ridenhour M, Bagavathi A, Raisi E, Krishnan S (2020) Detecting online hate speech: approaches using weak supervision and network embedding models. arXiv preprint arXiv:2007.12724

  • Rosenthal S, Atanasova P, Karadzhov G, Zampieri M, Nakov P(2021) Solid: a large-scale semi-supervised dataset for offensive language identification. In: Findings of ACL

  • Sarkar D, Zampieri M, Ranasinghe T, Ororbia A (2021) fbert: a neural transformer for identifying offensive content. In: Findings of the association for computational linguistics: EMNLP 2021, pp 1792– 1798

  • Schwarm SE, Ostendorf M ( 2005) Reading level assessment using support vector machines and statistical language models. In: Proceedings of ACL

  • Tulkens S, Hilte L, Lodewyckx E, Verhoeven B, Daelemans W (2016) A dictionary-based approach to racism detection in Dutch Social Media. In: Proceedings of TA-COS

  • Wiegand M, Siegel M, Ruppenhofer J ( 2018) Overview of the GermEval 2018 shared task on the identification of offensive language. In: Proceedings of GermEval

  • Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac,P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T, Gugger S, Drame M, Lhoest Q, Rush A (2020) Transformers: state-of-the-art natural language processing. In: Proceedings of EMNLP

  • Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV (2019) XLNet: generalized autoregressive pretraining for language understanding. In: Proceedings of NeurIPS

  • Yao M, Chelmis C, Zois D-S (2019)Cyberbullying ends here: towards robust detection of cyberbullying in social media. In: Proceedings of WWW

  • Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R (2019) Predicting the type and target of offensive posts in social media. In: Proceedings of NAACL

  • Zampieri M, Nakov P, Rosenthal S, Atanasova P, Karadzhov G, Mubarak H, Derczynski L, Pitenis Z, Çöltekin C (2020) SemEval-2020 Task 12: multilingual offensive language identification in social media (OffensEval 2020). In: Proceedings of SemEval

  • Zhang J, Chang J, Danescu-Niculescu-Mizil C, Dixon L, Hua Y, Taraborelli D, Thain N ( 2018) Conversations gone awry: detecting early signs of conversational failure. In: Proceedings of ACL

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marcos Zampieri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, M., Ranasinghe, T., Chaudhari, M. et al. Predicting the type and target of offensive social media posts in Marathi. Soc. Netw. Anal. Min. 12, 77 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: