Adamic L et al (2015) The diffusion of support in an online social movement: evidence from the adoption of equal-sign profile pictures, pp 1741–1750
Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47
MathSciNet
Article
Google Scholar
Aral S, Walker D (2012) Identifying influential and susceptible members of social networks. Science 337(6092): 337–341
MathSciNet
Article
Google Scholar
Bakshy E, Hofman JM, Mason WA, Watts DJ (2011a) Everyone's an influencer: quantifying influence on Twitter, pp 65–74
Bakshy E, Hofman JM, Mason WA, Watts DJ (2011b) Identifying influencers on Twitter
Baños RA, Borge-Holthoefer J, Moreno Y (2013) The role of hidden influentials in the diffusion of online information cascades. EPJ Data Sci 2(1):6
Article
Google Scholar
Barash V (2011) The dynamics of social contagion. Ph.D. thesis, Cornell University, Ithaca, NY, USA, aAI3485091
Bass FM (1969) A new product growth for model consumer durables. Manage Sci 15(5):215–227
Article
Google Scholar
Bearden WO, Netemeyer RG, Teel JE (1989) Measurement of consumer susceptibility to interpersonal influence. J Consum Res 15(4):473–481
Article
Google Scholar
Bruning PF, Alge BJ, Lin HC (2018) The embedding forces of network commitment: an examination of the psychological processes linking advice centrality and susceptibility to social influence. Organ Behav Hum Decis Process 148:54–69
Article
Google Scholar
Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? pp 925–936
Comito C, Forestiero A, Pizzuti C (2019) Word embedding based clustering to detect topics in social media, pp 192–199
Comito C (2020) Next: a framework for next-place prediction on location based social networks. Knowl-Based Syst 204(106):205
Google Scholar
Comito C (2021) How covid-19 information spread in us the role of Twitter as early indicator of epidemics. IEEE Trans Serv Comput https://doi.org/10.1109/TSC.2021.3091281
Article
Google Scholar
Cox S, Horadam K, Rao A (2016) The spread of ideas in a weighted threshold network, pp 437–447
Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227
Article
Google Scholar
de Oliveira JF, Marques-Neto HT, Karsai M (2020) Information adoption via repeated or diversified social influence on Twitter
de Vries DA, Kühne R (2015) Facebook and self-perception: Individual susceptibility to negative social comparison on Facebook. Personal Individ Differ 86:217–221
Article
Google Scholar
Dow PA, Adamic LA, Friggeri A (2013) The anatomy of large Facebook cascades. ICWSM 1(2):12.
Google Scholar
Gleeson JP, Cahalane DJ (2007) Seed size strongly affects cascades on random networks. Phys Rev E 75(5):056103
Article
Google Scholar
Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443.
Article
Google Scholar
Granovetter M, Soong R (1983) Threshold models of diffusion and collective behavior. J Math Sociol 9(3):165–179
Article
Google Scholar
Hoang TA, Lim EP (2012) Virality and susceptibility in information diffusions
Hoang TA, Lim EP (2013) Retweeting: an act of viral users, susceptible users, or viral topics? pp 569–577
Hoang TA, Lim EP (2016) Tracking virality and susceptibility in social media, pp 1059–1068
Hurd TR, Gleeson JP (2013) On Watts' cascade model with random link weights. J Complex Netw 1(1):25–43
Article
Google Scholar
Karampourniotis PD, Sreenivasan S, Szymanski BK, Korniss G (2015) The impact of heterogeneous thresholds on social contagion with multiple initiators. PLoS ONE 10(11):56
Article
Google Scholar
Karimi F, Holme P (2013) Threshold model of cascades in empirical temporal networks. Physica A: Stat Mech Appl 392(16):3476–3483
Article
Google Scholar
Karsai M, Iñiguez G, Kikas R, Kaski K, Kertész J (2016) Local cascades induced global contagion: how heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading. Sci Rep 6(27):178
Google Scholar
Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888.
Article
Google Scholar
Lee RKW, Lim EP (2015) Measuring user influence, susceptibility and cynicalness in sentiment diffusion, pp 411–422
Mensah H, Xiao L, Soundarajan S (2019) Characterizing susceptible users on Reddit's change my view
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space.arXiv:13013781
Minatel D, Ferreira V, de Andrade LA (2021) Local-entity resolution for building location-based social networks by using stay points. Theor Comput Sci 851:62–76
MathSciNet
Article
Google Scholar
Rogers EM (2010) Diffusion of innovations. Simon and Schuster, New York
Google Scholar
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
Article
Google Scholar
Ruan Z, Iniguez G, Karsai M, Kertész J (2015) Kinetics of social contagion. Phys Rev Lett 115(21):218702
Article
Google Scholar
Schelling TC (1969) Models of segregation. Am Econ Rev 59(2):488–493
Google Scholar
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423
MathSciNet
Article
Google Scholar
Twitter I (2020) Twitter developer. https://developer.twitter.com
Tussyadiah SP, Kausar DR, Soesilo PK (2018) The effect of engagement in online social network on susceptibility to influence. J Hosp Tour 42(2):201–223
Article
Google Scholar
Unicomb S, Iñiguez G, Karsai M (2018) Threshold driven contagion on weighted networks. Sci Rep 8(1):3094
Article
Google Scholar
Unicomb S, Iñiguez G, Kertész J, Karsai M (2019) Reentrant phase transitions in threshold driven contagion on multiplex networks. Phys Rev E 100:040301. https://doi.org/10.1103/PhysRevE.100.040301
Article
Google Scholar
Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11):2579–2605
MATH
Google Scholar
Wald R, Khoshgoftaar TM, Napolitano A, Sumner C (2013) Predicting susceptibility to social bots on Twitter, pp 6–13
Wagner C, Mitter S, Körner C, Strohmaier M (2012) When social bots attack: modeling susceptibility of users in online social networks. In: # MSM, pp 41–48
Wang W, Tang M, Shu P, Wang Z (2016) Dynamics of social contagions with heterogeneous adoption thresholds: crossover phenomena in phase transition. New J Phys 18(1):013029
Article
Google Scholar
Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge University Press, Cambridge
Book
Google Scholar
Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771
MathSciNet
Article
Google Scholar
Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum Res 34(4):441–458
Article
Google Scholar
Weeks BE (2015) Emotions, partisanship, and misperceptions: how anger and anxiety moderate the effect of partisan bias on susceptibility to political misinformation. J Commun 65(4):699–719
Article
Google Scholar
Yağan O, Gligor V (2012) Analysis of complex contagions in random multiplex networks. Phys Rev E 86(3):036103
Article
Google Scholar