Skip to main content
Log in

Achieving spectral localization of network using betweenness-based edge perturbation

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Graph is a simple but effective way to represent a complex system, where a node represents a component of the system and edge represents connection between the components. Several insights can be inferred by analyzing such graphs. In this field, optimization of spread and localization are relatively a new research domain. The objective of the spread problem is to maximize the influence, whereas localization controls the diffusion. In this paper, our focus is on the eigenvector localization of the network adjacency matrix using inverse participation ratio (IPR). In this context, we propose betweenness centrality-based perturbation (BP) to localize the network. The results show that the BP approach achieves a better localization than the existing random perturbation (RP) approach. It shows maximum IPR than RP. The performance of the approaches is evaluated using threshold rate of diffusion (τ), number of modifications and IPR. Susceptible–infected–susceptible model is used to investigate the τ value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IPR:

Inverse participation ratio

SIS:

Susceptible–infected–susceptible

SIR:

Susceptible–infected–recovered

SI:

Susceptible–infected

RP:

Random perturbation

BP:

Betweenness centrality-based perturbation

τ :

Rate of diffusion (threshold)

NM:

Number of modifications

PEV:

Principal eigenvector

LEV:

Largest eigenvalue

IPR*:

Optimal IPR

BC:

Betweenness centrality

References

  • Amato F, Moscato V, Picariello A, Sperlí G (2019) Diffusion algorithms in multimedia social networks: a novel model. In: Kaya M, Alhajj R (eds) Influence and behavior analysis in social networks and social media. ASONAM 2018. Lecture notes in social networks. Springer, Cham

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Bategaji V, Mrvar A (2006a) Pajek dataset. http://vlado.fmf.uni-lj.si/pub/networks/data/

  • Bategaji V, Mrvar A (2006b) Pajek dataset. http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm

  • Chen Z, Taylor K (2017) Modeling the spread of influence for independent cascade diffusion process in social networks. In: ICDCSW

  • Dhar J, Jain A, Gupta VK (2016) A mathematical model of news propagation on online social network and a control strategy for rumor spreading. Soc Netw Anal Min 6:57. https://doi.org/10.1007/s13278-016-0366-5

    Article  Google Scholar 

  • Dwivedi SK, Jalan S (2014) Emergence of clustering: role of inhibition. Phys Rev E 90:032803

    Article  Google Scholar 

  • Ferreira RS, da Costa RA, Dorogovtsev SN, Mendes JFF (2016) Metastable localization of diseases in complex networks. Phys Rev E 94:062305

    Article  Google Scholar 

  • Garas A, Schweitzer F, Havlin S (2012) A k-shell decomposition method for weighted networks. New J Phys 14:083030

    Article  Google Scholar 

  • Gaye I, Mendy G, Ouya S, Seck D (2017) An approach to maximize the influence spread in the social networks. In: Missaoui R, Abdessalem T, Latapy M (eds) Trends in social network analysis. Lecture notes in social networks. Springer, Cham

    Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99(12):7821–7826

    Article  MathSciNet  Google Scholar 

  • Goltsev AV, Dorogovtsev SN, Oliveira JG, Mendes JFF (2012) Localization and spreading of diseases in complex networks. Phys Rev Lett 109:128702

    Article  Google Scholar 

  • Harary F, Palmer E (1973) Graphical enumeration. Academic Press, New York

    MATH  Google Scholar 

  • Jahnke L, Kantelhardt JW, Berkovits R, Havlin S (2008) Wave localization in complex networks with high clustering. Phys Rev Lett 101:175702

    Article  Google Scholar 

  • Jain A, Borkar V, Garg D (2016) Fast rumor source identification via random walks. Soc Netw Anal Min 6:62. https://doi.org/10.1007/s13278-016-0373-6

    Article  Google Scholar 

  • Jalan S, Solymosi N, Vattay G, Li B (2010) Random matrix analysis of localization properties of gene coexpression network. Phys Rev E 81:046118

    Article  Google Scholar 

  • Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’03, pp 137–146 (2003)

  • Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893

    Article  Google Scholar 

  • Martin T, Zhang X, Newman MEJ (2014) Localization and centrality in networks. Phys Rev E 90:052808

    Article  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, New York

    Book  Google Scholar 

  • Pradhan P, Yadav A, Dwivedi SK, Jalan S (2017) Optimized evolution of networks for principal eigenvector localization. Phys Rev E 96:022312

    Article  Google Scholar 

  • Riondato M, Kornaropoulos EM (2015) Fast approximation of betweenness centrality through sampling. Data Min Knowl Disc 30:2

    MathSciNet  MATH  Google Scholar 

  • Runka A, White T (2015) Towards intelligent control of influence diffusion in social networks. Soc Netw Anal Min 5:9. https://doi.org/10.1007/s13278-015-0248-2

    Article  Google Scholar 

  • Suweis S, Grilli J, Banavar JR, Allensian S, Maritan A (2015) Effect of localization on the stability of mutualistic ecological networks. Nat Commun 6:10179

    Article  Google Scholar 

  • Wang Y, Chakrabarti D, Wang C, Faloutsos C (2013) Epidemic spreading in real networks: an eigenvalue view point. In: Proceedings of the 22nd international symposium on reliable distributed systems. IEEE, New York, p 25

  • Yang W, Brenner L, Giua A (2019) Influence maximization in independent cascade networks based on activation probability computation. IEEE Access 7:13745–13757

    Article  Google Scholar 

  • Yu PD, Tan CW, Fu HL (2019) Rumor source detection in finite graphs with boundary effects by message-passing algorithms. In: Kaya M, Alhajj R (eds) Influence and behavior analysis in social networks and social media. ASONAM 2018. Lecture notes in social networks. Springer, Cham

    Google Scholar 

  • Zanette DH (2002) Dynamics of rumor propagation on small-world networks. Phys Rev E 65:041908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, D., Pradhan, S.R. Achieving spectral localization of network using betweenness-based edge perturbation. Soc. Netw. Anal. Min. 10, 74 (2020). https://doi.org/10.1007/s13278-020-00687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-020-00687-y

Keywords

Navigation