Community detection in large-scale social networks: state-of-the-art and future directions

Abstract

Community detection is an important research area in social networks analysis where we are concerned with discovering the structure of the social network. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is an NP-hard problem and not yet solved to a satisfactory level. This computational complexity is hampered by two major factors. The first factor is related to the huge size of nowadays social networks like Facebook and Twitter reaching billions of nodes. The second factor is related to the dynamic nature of social networks whose structure evolves over time. For this, community detection in social networks analysis is gaining increasing attention in the scientific community and a lot of research was done in this area. The main goal of this paper is to give a comprehensive survey of community detection algorithms in social graphs. For this, we provide a taxonomy of existing models based on the computational nature (either centralized or distributed) and thus in static and dynamic social networks. In addition, we provide a comprehensive overview of existing applications of community detection in social networks. Finally, we provide further research directions as well as some open challenges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    https://newsroom.fb.com/news/2018/04/facebook-reports-first-quarter-2018-results/, Apr. 2019.

  2. 2.

    https://blog.hootsuite.com/twitter-statistics/, Apr. 2019.

  3. 3.

    https://www.omnicoreagency.com/linkedin-statistics/, Apr. 2019.

  4. 4.

    http://blog.flickr.net/en/2015/05/07/flickr-unified-search/, Apr. 2019.

  5. 5.

    https://www.omnicoreagency.com/youtube-statistics/, Apr. 2019.

  6. 6.

    http://mrvar.fdv.uni-lj.si/pajek/, Apr. 2019.

  7. 7.

    http://snap.stanford.edu/data/index.html/, Apr. 2019.

References

  1. Abrouk L, Gross-Amblard D, Leprovost D (2010) Decouverte de communautes par analyse des usages. extraction et gestion des connaissances-Atelier Web Social A5–5

  2. Aktunc R, Toroslu IH, Ozer M, Davulcu H (2015) A dynamic modularity based community detection algorithm for large-scale networks: Dslm. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM’15, pp 1177–1183

  3. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    MathSciNet  MATH  Article  Google Scholar 

  4. Asadi M, Ghaderi F (2018) Incremental community detection in social networks using label propagation method. In: Proceedings of the 2018 23rd conference of open innovations association, FRUCT’18, pp 39–47

  5. Azaouzi M, Romdhane LB (2017) An evidential influence-based label propagation algorithm for distributed community detection in social networks. Procedia Computer Science, 112:407 – 416. In: Proceedings of the 21st international conference on knowledge-based and intelligent information and engineering systems, KES2017, 6–8 Sep 2017, Marseille, France

  6. Azaouzi M, Romdhane LB (2018) An efficient two-phase model for computing influential nodes in social networks using social actions. J Comput Sci Technol 33(2):286–304

    MathSciNet  Article  Google Scholar 

  7. Barnard ST, Simon HD (1994) Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr Comput Pract Exp 6(2):101–117

    Article  Google Scholar 

  8. Ben Romdhane L, Chaabani Y, Zardi H (2013) A robust ant colony optimization-based algorithm for community mining in large scale oriented social graphs. Expert Syst Appl 40(14):5709–5718

    Article  Google Scholar 

  9. Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  10. Bhat SY, Abulaish M (2015) Hoctracker: tracking the evolution of hierarchical and overlapping communities in dynamic social networks. IEEE Trans Knowl Data Eng 27(4):1013–1019

    Article  Google Scholar 

  11. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008a) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

    MATH  Article  Google Scholar 

  12. Boppana RB (1987) Eigenvalues and graph bisection: an average-case analysis. In: 28th annual symposium on foundations of computer science, pp 280–285

  13. Bu Z, Wu Z, Cao J, Jiang Y (2016) Local community mining on distributed and dynamic networks from a multiagent perspective. IEEE Trans Cybern 46(4):986–999

    Article  Google Scholar 

  14. Buzun N, Korshunov A, Avanesov V, Filonenko I, Kozlov I, Turdakov D, Kim H (2014) Egolp: fast and distributed community detection in billion-node social networks. In: Proceedings of the 2014 IEEE international conference on data mining workshop, ICDMW’14, pp 533–540

  15. Calderone A, Formenti M, Aprea F, Papa M, Alberghina L, Colangelo AM, Bertolazzi P (2016) Comparing alzheimer’s and parkinson’s diseases networks using graph communities structure. BMC Syst Biol 10(1):25

    Article  Google Scholar 

  16. Cattuto C, Baldassarri A, Servedio VD, Loreto V (2008) Emergent community structure in social tagging systems. Adv Complex Syst 11(04):597–608

    MATH  Article  Google Scholar 

  17. Chaabani Y, Akaichi J (2017) Meaningful communities detection in medias network. Soc Netw Anal Min 7(1):1–11

    Article  Google Scholar 

  18. Chakraborty T, Dalmia A, Mukherjee A, Ganguly N (2017) Metrics for community analysis: a survey. ACM Comput Surv 50(4):54:1–54:37

    Article  Google Scholar 

  19. Charikar MS (2002) Similarity estimation techniques from rounding algorithms. In: Proceedings of the thiry-fourth annual ACM symposium on theory of computing, STOC’02, pp 380–388

  20. Chevalier C, Safro I (2009) Comparison of coarsening schemes for multilevel graph partitioning. In: Learning and intelligent optimization, pp 191–205

  21. Clementi A, Di Ianni M, Gambosi G, Natale E, Silvestri R (2015) Distributed community detection in dynamic graphs. Theor Comput Sci 584:19–41

    MathSciNet  MATH  Article  Google Scholar 

  22. Collingsworth B, Menezes R (2014) A self-organized approach for detecting communities in networks. Soc Netw Anal Min 4(1):169

    Article  Google Scholar 

  23. Cordeiro M, Sarmento RP, Gama J (2016) Dynamic community detection in evolving networks using locality modularity optimization. Soc Netw Anal Min 6(1):15

    Article  Google Scholar 

  24. Costa LF, Oliveira ON Jr, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, CorreaRocha LE (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60(3):329–412

    Article  Google Scholar 

  25. Cruz JD, Bothorel C, Poulet F (2011) Semantic clustering of social networks using points of view. CORIA: conférence en recherche d’information et applications. Avignon, France, pp 175–182

  26. Dang T, Viennet E (2012) Community detection based on structural and attribute similarities. In: International conference on digital society, ICDS’12, pp 7–14

  27. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Transa Pattern Anal Mach Intell 29(11):1944–1957

    Article  Google Scholar 

  28. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power–law relationships of the internet topology. SIGCOMM Comput Commun Rev 29(4):251–262

    MATH  Article  Google Scholar 

  29. Fan W, Yeung K (2014) Incorporating profile information in community detection for online social networks. Phys A Stat Mech Appl 405:226–234

    Article  Google Scholar 

  30. Feng H, Tian J, Wang HJ, Li M (2015) Personalized recommendations based on time-weighted overlapping community detection. Inf Manag 52(7):789–800

    Article  Google Scholar 

  31. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

    MathSciNet  Article  Google Scholar 

  32. Galluzzi V (2012) Real time distributed community structure detection in dynamic networks. In: 2012 IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM’12, pp 1236–1241

  33. Gargi U, Lu W, Mirrokni VS, Yoon S (2011) Large-scale community detection on youtube for topic discovery and exploration. In: Proceedings of the fifth international conference on weblogs and social media, ICWSM’11, pp 486–489

  34. Gasparetti F, Micarelli A, Sansonetti G (2017) Community detection and recommender systems. Springer, New York, pp 1–14

    Google Scholar 

  35. Ge R, Ester M, Gao BJ, Hu Z, Bhattacharya B, Ben-Moshe B (2008) Joint cluster analysis of attribute data and relationship data: the connected k-center problem, algorithms and applications. ACM Trans Knowl Discov Data 2(2):7:1–7:35

    Article  Google Scholar 

  36. Ghaemmaghami F, Sarhadi RM (2013) Somsn: an effective self organizing map for clustering of social networks. Int J Comput Appl 84(5):7–12

    Google Scholar 

  37. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    MathSciNet  MATH  Article  Google Scholar 

  38. Gkini C, Brailas A (2015) Visualizations of personal social networks on facebook and community structure: an exploratory study. Eur J Soc Behav 2(1):21–30

    Google Scholar 

  39. Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: Proceedings of the 2010 international conference on advances in social networks analysis and mining, ASONAM’10, pp 176–183

  40. Gregori E, Lenzini L, Mainardi S (2013) Parallel k-clique community detection on large-scale networks. IEEE Trans Parallel Distrib Syst 24(8):1651–1660

    Article  Google Scholar 

  41. Gu Y, Qian X, Li Q, Wang M, Hong R, Tian Q (2015) Image annotation by latent community detection and multikernel learning. IEEE Trans Image Process 24(11):3450–3463

    MathSciNet  MATH  Article  Google Scholar 

  42. Halalai R, Lemnaru C, Potolea R (2010) Distributed community detection in social networks with genetic algorithms. In: Proceedings of the 2010 IEEE international conference on intelligent computer communication and processing, ICCP’10, pp 35–41

  43. He J, Chen D (2015) A fast algorithm for community detection in temporal network. Phys A Stat Mech Appl 429:87–94

    Article  Google Scholar 

  44. Hendrickson B, Leland R (1995) A multilevel algorithm for partitioning graphs. In: Proceedings of the 1995 ACM/IEEE conference on supercomputing, supercomputing’95, p 28

  45. Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci 101(suppl 1):5249–5253

    Article  Google Scholar 

  46. Hu P, Lau WC (2013) A survey and taxonomy of graph sampling. arXiv:1308.5865

  47. Huang HH, Yang HC (2012) Semantic clustering-based community detection in an evolving social network. In: 2012 sixth international conference on genetic and evolutionary computing, ICGEC’12, pp 91–94

  48. Huang J, Yang B, Jin D, Yang Y (2013) Decentralized mining social network communities with agents. Math Comput Model 57(11):2998–3008

    MathSciNet  MATH  Article  Google Scholar 

  49. Hübler C, Kriegel HP, Borgwardt K, Ghahramani Z (2008) Metropolis algorithms for representative subgraph sampling. In: Proceedings of the 2008 eighth IEEE international conference on data mining, ICDM ’08, pp 283–292

  50. Hui P, Yoneki E, Chan SY, Crowcroft J (2007) Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE international workshop on Mobility in the evolving internet architecture, MobiArch’07, pp 7

  51. Java A, Song X, Finin T, Tseng B (2007) Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis. ACM, pp 56–65

  52. Ji J, Jiao L, Yang C, Liu J (2016) A multiagent evolutionary method for detecting communities in complex networks. Comput Intell 32(4):587–614

    MathSciNet  Article  Google Scholar 

  53. Kang U, Faloutsos C (2011) Beyond’caveman communities’: hubs and spokes for graph compression and mining. In: Proceedings of the 2011 IEEE 11th international conference on data mining, ICDM’11, pp 300–309

  54. Karypis G, Kumar V (1998a) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    MathSciNet  MATH  Article  Google Scholar 

  55. Karypis G, Kumar V (1998b) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48(1):96–129

    MATH  Article  Google Scholar 

  56. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–307

    MATH  Article  Google Scholar 

  57. Kohonen T, Kaski S, Lappalainen H (1997) Self-organized formation of various invariant-feature filters in the adaptive-subspace som. Neural Comput 9(6):1321–1344

    Article  Google Scholar 

  58. Kosmides P, Adamopoulou E, Demestichas K, Remoundou C, Loumiotis I, Theologou M (2014) Community awareness in academic social networks. In: 2014 IEEE/ACM 7th international conference on utility and cloud computing, pp 647–651

  59. Kothapalli K, Pemmaraju SV, Sardeshmukh V (2013) On the analysis of a label propagation algorithm for community detection. In: Proceedings of the 14th international conference on distributed computing and networking, ICDCN’13, pp 255–269

  60. Krishnamurthy V, Faloutsos M, Chrobak M, Lao L, Cui J-H, Percus AG (2005) Reducing large internet topologies for faster simulations. Networking 5:328–341

    Google Scholar 

  61. Kuzmin K, Shah SY, Szymanski BK (2013) Parallel overlapping community detection with slpa. In: Proceedings of the 2013 international conference on social computing, SocialCom’13, pp 204–212

  62. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033015

    Article  Google Scholar 

  63. LaSalle D, Karypis G (2015) Multi-threaded modularity based graph clustering using the multilevel paradigm. J Parallel Distrib Comput 76:66–80

    Article  Google Scholar 

  64. Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’06, pp 631–636

  65. Leung IX, Hui P, Lio P, Crowcroft J (2009) Towards real-time community detection in large networks. Phys Rev E 79(6):066107

    Article  Google Scholar 

  66. Li S, Lou H, Jiang W, Tang J (2015) Detecting community structure via synchronous label propagation. Neurocomputing 151:1063–1075

    Article  Google Scholar 

  67. Li Y, Liu G, Lao S-Y (2013) A genetic algorithm for community detection in complex networks. J Central South Univ 20(5):1269–1276

    Article  Google Scholar 

  68. Li Z, Liu J, Wu K (2018) A multiobjective evolutionary algorithm based on structural and attribute similarities for community detection in attributed networks. IEEE Trans Cybern 48(7):1963–1976

    Article  Google Scholar 

  69. Li Z, Wang R, Zhang X, Chen L (2010) Self-organizing map of complex networks for community detection. J Syst Sci Complex 23(5):931–941

    MathSciNet  MATH  Article  Google Scholar 

  70. Lin Y-R, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data 3(2):8

    Article  Google Scholar 

  71. Lin Z, Zheng X, Xin N, Chen D (2014) Ck-lpa: Efficient community detection algorithm based on label propagation with community kernel. Phys A Stat Mech Appl 416:386–399

    Article  Google Scholar 

  72. Liu J, Zeng J (2010) Community detection based on modularity density and genetic algorithm. In: Proceedings of the 2010 international conference on computational aspects of social networks, CASoN’10, pp 29–32

  73. Lou H, Li S, Zhao Y (2013) Detecting community structure using label propagation with weighted coherent neighborhood propinquity. Phys A Stat Mech Appl 392(14):3095–3105

    Article  Google Scholar 

  74. Lumsdaine A, Gregor D, Hendrickson B, Berry JW (2007) Challenges in parallel graph processing. Parallel Process Lett 17(1):5–20

    MathSciNet  Article  Google Scholar 

  75. Maiya AS, Berger-Wolf TY (2010) Sampling community structure. In: Proceedings of the 19th international conference on World wide web, WWW’10, pp 701–710

  76. Mansour N, Ponnusamy R, Choudhary A, Fox GC (1993) Graph contraction for physical optimization methods: a quality-cost tradeoff for mapping data on parallel computers. In: Proceedings of the 7th international conference on supercomputing, ICS’93, pp 1–10

  77. McDaid A, Hurley N (2010) Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the 2010 international conference on advances in social networks analysis and mining, ASONAM’10, pp 112–119

  78. Milgram S (1967) The small world problem. Psychol Today 67(1):61–67

    Google Scholar 

  79. Nath K, Roy S (2018) A parallel approach to detect communities in evolving networks. In: Proceedings of the international conference on big data analytics, BDA’18, pp 188–203

  80. Nayak V, Biswas B (2014) Finding prominent features in communities in social networks using ontology, pp 31–36

  81. Neville J, Adler M, Jensen D (2003) Clustering relational data using attribute and link information. In: Proceedings of the text mining and link analysis workshop, 18th international joint conference on artificial intelligence, pp 9–15

  82. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Article  Google Scholar 

  83. Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and its applications. PLoS ONE 9(4):e91431

    Article  Google Scholar 

  84. Noack A, Rotta R (2009) Multi-level algorithms for modularity clustering. SEA 9:257–268

    Google Scholar 

  85. Osborne F, Scavo G, Motta E (2014) A hybrid semantic approach to building dynamic maps of research communities. In: International conference on knowledge engineering and knowledge management, EKAW’15, pp 356–372

  86. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106

    Article  Google Scholar 

  87. Ren Y, Chuah MC, Yang J, Chen Y (2011) Distributed spatio-temporal social community detection leveraging template matching. In: Proceedings of the 2011 IEEE global telecommunications conference, GLOBECOM’11, pp 1–6

  88. Rhouma D, Romdhane LB (2014) An efficient algorithm for community mining with overlap in social networks. Expert Syst Appl 41(9):4309–4321

    Article  Google Scholar 

  89. Rhouma D, Romdhane LB (2018) An efficient multilevel scheme for coarsening large scale social networks. Appl Intell 48(10):3557–3576

    Article  Google Scholar 

  90. Riedy EJ, Meyerhenke H, Ediger D, Bader DA (2011) Parallel community detection for massive graphs. In: Proceedings of the 9th international conference on parallel processing and applied mathematics, pp 286–296

  91. Ruan Y, Fuhry D, Liang J, Wang Y, Parthasarathy S (2015) Community discovery: simple and scalable approaches. In: User community discovery. Springer, pp 23–54

  92. Sadi S, Ögüdücü Ş, Uyar A. Ş (2010) An efficient community detection method using parallel clique-finding ants. In: Proceedings of the 2010 IEEE congress on evolutionary computation, CGC’10, pp 1–7

  93. Safro I, Ron D, Brandt A (2009) Multilevel algorithms for linear ordering problems. JEA 13:4:1.4–4:1.20

    MathSciNet  MATH  Article  Google Scholar 

  94. Said A, Abbasi RA, Maqbool O, Daud A, Aljohani NR (2018) Cc-ga: a clustering coefficient based genetic algorithm for detecting communities in social networks. Appl Soft Comput 63:59–70

    Article  Google Scholar 

  95. Salton G, McGill MJ (1986) Introduction to modern information retrieval. McGraw-Hill Inc, New York

    Google Scholar 

  96. Saltz M, Prat-Pérez A, Dominguez-Sal D (2015) Distributed community detection with the wcc metric. In: Proceedings of the 24th international conference on world wide web, WWW’15, pp 1095–1100

  97. Samie ME, Hamzeh A (2018) Change-aware community detection approach for dynamic social networks. Appl Intell 48(1):78–96

    Article  Google Scholar 

  98. Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’09, pp 737–746

  99. Satuluri V, Parthasarathy S, Ruan Y (2011) Local graph sparsification for scalable clustering. In: Proceedings of the 2011 ACM SIGMOD international conference on management of data, SIGMOD’11, pp 721–732

  100. Shang J, Liu L, Li X, Xie F, Wu C (2016) Targeted revision: a learning-based approach for incremental community detection in dynamic networks. Phys A Stat Mech Appl 443:70–85

    Article  Google Scholar 

  101. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55

    MathSciNet  Article  Google Scholar 

  102. Staudt CL, Meyerhenke H (2013) Engineering high-performance community detection heuristics for massive graphs. In: Proceedings of the 2013 42nd international conference on parallel processing, ICPP’13, pp 180–189

  103. Staudt CL, Meyerhenke H (2016) Engineering parallel algorithms for community detection in massive networks. IEEE Trans Parallel Distrib Syst 27(1):171–184

    Article  Google Scholar 

  104. Steinhaeuser K, Chawla NV (2008) Community detection in a large real-world social network. In: Liu H, Salerno JJ, Young MJ (eds) Social computing, behavioral modeling, and prediction. Springer, Boston, MA, pp 168–175

    Google Scholar 

  105. Šubelj L, Bajec M (2011) Robust network community detection using balanced propagation. Eur Phys J B Condens Matter Complex Syst 81(3):353–362

    Article  Google Scholar 

  106. Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11):471

    Article  Google Scholar 

  107. Wang T, Chen Y, Zhang Z, Xu T, Jin L, Hui P, Deng B, Li X (2011) Understanding graph sampling algorithms for social network analysis. In: 2011 31st international conference on distributed computing systems workshops, ICDCSW’11, pp 123–128

  108. Wang C-D, Lai J-H, Philip SY (2014a) Neiwalk: community discovery in dynamic content-based networks. IEEE Trans Knowl Data Eng 26(7):1734–1748

    Article  Google Scholar 

  109. Wang Z, Zhang D, Zhou X, Yang D, Yu Z, Yu Z (2014b) Discovering and profiling overlapping communities in location-based social networks. IEEE Trans Syst Man Cybern Syst 44(4):499–509

    Article  Google Scholar 

  110. Wang W, Jiao P, He D, Jin D, Pan L, Gabrys B (2016a) Autonomous overlapping community detection in temporal networks. Knowl Based Syst 110(C):121–134

    Article  Google Scholar 

  111. Wang X, Jin D, Cao X, Yang L, Zhang W (2016b) Semantic community identification in large attribute networks. In: Proceedings of the thirtieth conference on artificial intelligence, AAAI’16, pp 265–271

  112. Wasserman S, Faust K (1994) Social network analysis: methods and applications, volume 8 of structural analysis in the social sciences. Cambridge University Press, Cambridge

    Google Scholar 

  113. Whang JJ, Sui X, Dhillon IS (2012) Scalable and memory-efficient clustering of large-scale social networks. In: 2012 IEEE 12th international conference on data mining, ICDM’12, pp 705–714

  114. Whitbeck J, Conan V, Dias de Amorim M (2011) Performance of opportunistic epidemic routing on edge-markovian dynamic graphs. IEEE Trans Commun 59(5):1259–1263

    Article  Google Scholar 

  115. Wu Z, Zou M (2014) An incremental community detection method for social tagging systems using locality-sensitive hashing. Neural Netw 58:14–28

    Article  Google Scholar 

  116. Xie J, Szymanski BK (2013) Labelrank: a stabilized label propagation algorithm for community detection in networks. In: Proceedings of 2013 IEEE 2nd network science workshop, NSW’13, pp 138–143

  117. Xie J, Chen M, Szymanski BK (2013) Labelrankt: incremental community detection in dynamic networks via label propagation. In: Proceedings of the ACM SIGMOD workshop on dynamic networks management and mining, DyNetMM’13, pp 25–32

  118. Yang B, Liu J (2007) An autonomy oriented computing (aoc) approach to distributed network community mining. In: First international conference on self-adaptive and self-organizing systems, SASO’07, pp 151–160

  119. Yang B, Huang J, Liu D, Liu J (2009) A multi-agent based decentralized algorithm for social network community mining. In: 2009 international conference on advances in social network analysis and mining, ASONAM’09, pp 78–82

  120. Yang B, Liu D, Liu J (2010) Discovering communities from social networks: methodologies and applications. In: Furht B (ed) Handbook of social network technologies and applications. Springer, Boston, MA, pp 331–346

    Google Scholar 

  121. Zhang Y, Wang J, Wang Y, Zhou L (2009) Parallel community detection on large networks with propinquity dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’15, pp 997–1006

  122. Zhao Z, Feng S, Wang Q, Huang JZ, Williams GJ, Fan J (2012) Topic oriented community detection through social objects and link analysis in social networks. Knowl Based Syst 26:164–173

    Article  Google Scholar 

  123. Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. Proc VLDB Endow 2(1):718–729

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Azaouzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azaouzi, M., Rhouma, D. & Ben Romdhane, L. Community detection in large-scale social networks: state-of-the-art and future directions. Soc. Netw. Anal. Min. 9, 23 (2019). https://doi.org/10.1007/s13278-019-0566-x

Download citation

Keywords

  • Social networks
  • Dynamic social network
  • Centralized community detection
  • Distributed community detection
  • Semantic