Advertisement

An algebraic approach to temporal network analysis based on temporal quantities

  • Vladimir Batagelj
  • Selena Praprotnik
Original Article

Abstract

In a temporal network, the presence and activity of nodes and links can change through time. To describe temporal networks we introduce the notion of temporal quantities. We define the addition and multiplication of temporal quantities in a way that can be used for the definition of addition and multiplication of temporal networks. The corresponding algebraic structures are semirings. The usual approach to (data) analysis of temporal networks is to transform the network into a sequence of time slices—static networks corresponding to selected time intervals and analyze each of them using standard methods to produce a sequence of results. The approach proposed in this paper enables us to compute these results directly. We developed fast algorithms for the proposed operations. They are available as an open source Python library TQ (Temporal Quantities) and a program Ianus. The proposed approach enables us to treat as temporal quantities also other network characteristics such as degrees, connectivity components, centrality measures, Pathfinder skeleton, etc. To illustrate the developed tools we present some results from the analysis of Franzosi’s violence network and Corman’s Reuters terror news network.

Keywords

Temporal network Time slice Temporal quantity Semiring Algorithm Network measures Python library Violence Terror 

Mathematics Subject Classification

91D30 16Y60 90B10 68R10 93C55 

Notes

Acknowledgments

This work was supported in part by the ARRS, Slovenia, research program P1-0294 and research projects J5-5537 and J1-5433, as well as by a grant within the EURO-CORES Programme EUROGIGA (project GReGAS) of the European Science Foundation. The paper is based on our talks presented at the 1st European Conference on Social Networks, Barcelona (UAB), July 1–4, 2014.

References

  1. Batagelj V (1994) Semirings for social networks analysis. J Math Sociol 19(1):53–68MathSciNetCrossRefzbMATHGoogle Scholar
  2. Batagelj V (2009) Social network analysis, large-scale. Meyers RA (ed) Encyclopedia of complexity and systems science, Springer, 8245–8265Google Scholar
  3. Batagelj V, Cerinšek M (2013) On bibliographic networks. Scientometrics 96(3):845–864CrossRefGoogle Scholar
  4. Bhadra S, Ferreira A (2003) Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In ADHOC-NOW, LNCS 2865, Springer, 259–270Google Scholar
  5. Cantos-Mateos G, Zulueta MÁ, Vargas-Quesada B, Chinchilla-Rodríguez Z (2014) Estudio evolutivo de la investigación española con células madre. Visualización e identificación de las principales líneas de investigación. El Profesional de la Información, 23(3), 259–271Google Scholar
  6. Carré B (1979) Graphs and networks. Clarendon, OxfordzbMATHGoogle Scholar
  7. Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. Int J Parallel Emergent Distribut Syst 27(5):387–408CrossRefGoogle Scholar
  8. Corman SR, Kuhn T, McPhee RD, Dooley KJ (2002) Studying complex discursive systems: centering resonance analysis of communication. Human Commun Res 28(2):157–206Google Scholar
  9. de Nooy W, Mrvar A, Batagelj V (2012) Exploratory social network analysis with Pajek (structural analysis in the social sciences), revised and expanded, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  10. Feenstra RC, Lipsey RE, Deng H, Ma AC, Mo H (2005). World Trade Flows: 1962–2000. NBER Working Paper No. 11040Google Scholar
  11. Fletcher JG (1980) A more general algorithm for computing closed semiring costs between vertices of a directed graph. CACM 23:350–351CrossRefGoogle Scholar
  12. Franzosi R (1997) Mobilization and Counter-Mobilization Processes: From the “Red Years” (1919–20) to the “Black Years” (1921–22) in Italy. A New Methodological Approach to the Study of Narrative Data. Theor Soc 26(2–3):275–304CrossRefGoogle Scholar
  13. Freeman LC (1978) Centrality in social networks; conceptual clarification. Social Networks 1:215–239CrossRefGoogle Scholar
  14. George B, Kim S, Shekhar S (2007) Spatio-temporal network databases and routing algorithms: a summary of results. In: Papadias D, Zhang D, Kollios G (eds) SSTD 2007, LNCS 4605. Springer-Verlag, Berlin, Heidelberg, pp 460–477Google Scholar
  15. Gondran M, Minoux M (2008) Graphs, dioids and semirings: new models and algorithms. Springer, HiedelbergzbMATHGoogle Scholar
  16. Guerrero-Bote VP, Zapico-Alonso F, Espinosa-Calvo ME, Crisóstomo RG, de Moya-Anegón F (2006) Binary pathfinder: an improvement to the pathfinder algorithm. Info Proc Manag 42(6):1484–1490CrossRefGoogle Scholar
  17. Gulyás L, Kampis G, Legendi RO (2013) Elementary models of dynamic networks. Eur Phys J Special Topics 222:1311–1333CrossRefGoogle Scholar
  18. Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88:234CrossRefGoogle Scholar
  19. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRefGoogle Scholar
  20. Holme P, Saramäki J (eds) (2013) Temporal Networks. Understanding Complex Systems. Springer, HiedelbergGoogle Scholar
  21. Kim H, Yoon JW, Crowcroft J (2012) Network analysis of temporal trends in scholarly research productivity. J Informetr 6:97–110CrossRefGoogle Scholar
  22. Kolaczyk ED (2009) Stat Anal Network Data Meth Models. Springer, New YorkCrossRefGoogle Scholar
  23. Kontoleon N, Falzon L, Pattison P (2013) Algebraic structures for dynamic networks. J Math Psychol 57(6):310–319MathSciNetCrossRefzbMATHGoogle Scholar
  24. Moody J (2002) The importance of relationship timing for diffusion. Social Forces 81(1):25–56CrossRefGoogle Scholar
  25. Moody J, McFarland D, Bender-deMoll S (2005) Dynamic network visualization. Am J Sociol 110(4):1206–1241CrossRefGoogle Scholar
  26. Praprotnik S, Batagelj V (2016) Spectral centrality measures in temporal networks. Ars Mathematica Contemporanea 11:11–33MathSciNetzbMATHGoogle Scholar
  27. Praprotnik S, Batagelj V (2016) Semirings for temporal network analysis. http://arxiv.org/abs/1603.08261Google Scholar
  28. Riordan J (1958) Introduction to combinatorial analysis. Wiley, New YorkzbMATHGoogle Scholar
  29. Schvaneveldt RW (ed) (1990) Pathfinder associative networks: studies in knowledge organization. Ablex, Norwood, NJzbMATHGoogle Scholar
  30. Xuan BB, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Foundations Comput Sci 14(2):267–285MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.University of Ljubljana, FMFLjubljanaSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations