Using network science to assess particle swarm optimizers

  • Marcos Oliveira
  • Carmelo J. A. Bastos-Filho
  • Ronaldo MenezesEmail author
Original Article


Particle swarm optimizers (PSO) have been extensively used in optimization problems, but the scientific community still lacks proper mechanisms to analyze the swarm behavior during the optimization (execution) process. In this paper, we propose to assess the swarm information flow based on particle interactions. We introduce the concept of the swarm influence graph to capture the information exchange between the particles in a given iteration during the execution of the algorithm. We propose that analysis of this graph to find its number of components and its overall structure may be used to define a fingerprint for the swarm search behavior. We simulated the PSO algorithm with three different communication topologies and we showed that each topology leads to different communication signatures. Also, we showed that, in the case of a dynamic topology, this signature is related to the stagnation of the swarm.


Swarm intelligence Network science Particle swarm optimization Swarm behavior assessment 



We thank the two anonymous reviewers for their useful criticism and suggestions for improvement on our manuscript. Marcos Oliveira would like to thank the Science without Borders program (CAPES Foundation, Brazil) for financial support under grant 1032/13-5.


  1. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47. doi: 10.1103/RevModPhys.74.47 zbMATHMathSciNetCrossRefGoogle Scholar
  2. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512MathSciNetCrossRefGoogle Scholar
  3. Bastos-Filho CJA, Lima-Neto FB, Lins AJCC, Nascimento AIS, Lima MP (2008) A novel search algorithm based on fish school behavior. In: IEEE international conference on systems, man and cybernetics, pp 2646–2651Google Scholar
  4. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: Swarm intelligence symposium, SIS 2007. IEEE Press, New York, pp 120–127. doi: 10.1109/SIS.2007.368035
  5. Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73. doi: 10.1109/4235.985692
  6. Cvetković D, Rowlinson P, Simić S (2010) An introduction to the theory of graph spectra, 1st edn. Cambridge University Press, New YorkzbMATHGoogle Scholar
  7. Dorigo M, DiCaro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the congress on evolutionary computation. IEEE Press, New York, pp 1470–1477Google Scholar
  8. Dorogovtsev SN, Goltsev AV, Mendes JFF, Samukhin AN (2003) Spectra of complex networks. Phys Rev E 68:046–109. doi: 10.1103/PhysRevE.68.046109
  9. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39–43.  10.1109/MHS.1995.494215
  10. Eberhart R, Simpson P, Dobbins R (1996) Computational intelligence PC tools. Academic Press Professional Inc., New YorkGoogle Scholar
  11. Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, New YorkGoogle Scholar
  12. Farkas IJ, Derényi I, Barabási AL, Vicsek T (2001) Spectra of “real-world” graphs: beyond the semicircle law. Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2).
  13. Godoy A, Von Zuben F (2009) A complex neighborhood based particle swarm optimization. In: CEC ’09. IEEE congress on evolutionary computation. pp 720–727. doi: 10.1109/CEC.2009.4983016
  14. Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans Syst Man Cybern Part B Cybern 35(6):1272–1282. doi: 10.1109/TSMCB.2005.850530
  15. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical report, Erciyes University, Engineering Faculty, Computer Engineering DepartmentGoogle Scholar
  16. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation. IEEE Press, New York, pp 303–308Google Scholar
  17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, vol 4, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  18. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  19. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: CEC ’02. Proceedings of the 2002 congress on evolutionary computation, vol 2, pp 1671–1676. doi: 10.1109/CEC.2002.1004493
  20. Mendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment. In: SIS ’03. Proceedings of the 2003 swarm intelligence symposium. IEEE Press, New York, pp 88–94. doi: 10.1109/SIS.2003.1202252
  21. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210. doi: 10.1109/TEVC.2004.826074
  22. Mo S, Zeng J, Tan Y (2010) Particle swarm optimization based on self-organizing topology driven by fitness. In: CASON ’10. Proceedings of the 2010 international conference on computational aspects of social networks. IEEE Computer Society, Washington, DC, pp 23–26. doi: 10.1109/CASoN.2010.13
  23. Oliveira M, Bastos-Filho CJA, Menezes R (2013) Using network science to define a dynamic communication topology for particle swarm optimizers. In: Menezes R, Evsukoff A, González MC (eds) Complex networks, studies in computational intelligence, vol 424. Springer, Berlin, pp 39–47. doi: 10.1007/978-3-642-30287-9_5
  24. Peram T, Veeramachaneni K, Mohan C (2003) Fitness-distance-ratio based particle swarm optimization. In: SIS ’03. Proceedings of the swarm intelligence symposium. IEEE Press, New York, pp 174–181. doi: 10.1109/SIS.2003.1202264
  25. Pontes MR, Neto FBL, Bastos-Filho CJ (2011) Adaptive clan particle swarm optimization. In: 2011 IEEE symposium on swarm intelligence (SIS). IEEE Press, New York, pp 1–6Google Scholar
  26. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE world congress on computational intelligence. The 1998 IEEE international conference on evolutionary computation proceedings, pp 69–73. doi: 10.1109/ICEC.1998.699146
  27. Suganthan P (1999) Particle swarm optimiser with neighbourhood operator. In: CEC 99. Proceedings of the 1999 congress on evolutionary computation, vol 3, xxxvii+2348, p 3. doi: 10.1109/CEC.1999.785514
  28. Tang K, Li X, Suganthan PN, Yang Z, Weise T (2010) Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization. Tech. rep., University of Science and Technology of China (USTC), School of Computer Science and Technology, Nature Inspired Computation and Applications Laboratory (NICAL): Héféi, Anhui, China.
  29. Wang YX, Xiang QL (2008) Particle swarms with dynamic ring topology. In: Evolutionary computation. CEC 2008. IEEE world congress on computational intelligence, pp 419–423. doi: 10.1109/CEC.2008.4630831
  30. Zhan ZH, Zhang J, Li Y, Chung HH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381CrossRefGoogle Scholar
  31. Zhang J, Zhan Zh, Lin Y, Chen N, Zhong Jh, Chung HS, Li Y, Shi Yh (2011) Evolutionary computation meets machine learning: a survey. IEEE Comput Intell Mag 6(4):68–75zbMATHCrossRefGoogle Scholar
  32. Zhou Z, Shi Y (2011) Inertia weight adaption in particle swarm optimization algorithm. In: Advances in swarm intelligence. Springer, Berlin, pp 71–79Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Marcos Oliveira
    • 1
  • Carmelo J. A. Bastos-Filho
    • 2
  • Ronaldo Menezes
    • 1
    Email author
  1. 1.Florida Institute of TechnologyMelbourneUSA
  2. 2.University of PernambucoRecifeBrazil

Personalised recommendations