Skip to main content
Log in

On the computation of entropy production in stationary social networks

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Completing their initial phase of rapid growth, social networks are expected to reach a plateau from where on they are in a statistically stationary state. Such stationary conditions may have different dynamical properties. For example, if each message in a network is followed by a reply in opposite direction, the dynamics is locally balanced. Otherwise, if messages are ignored or forwarded to a different user, one may reach a stationary state with a directed flow of information. To distinguish between the two situations, we propose a quantity called entropy production that was introduced in statistical physics as a measure for non-vanishing probability currents in nonequilibrium stationary states. The proposed quantity closes a gap for characterizing online social networks. As major contribution, we show the relation and difference between entropy production and existing metrics. The comparison shows that computational intensive metrics like centrality can be approximated by entropy production for typical online social networks. To compute the entropy production from real-world measurements, the need for Bayesian inference and the limits of naïve estimates for those probability currents are shown. As further contribution, a general scheme is presented to measure the entropy production in small-world networks using Bayesian inference. The scheme is then applied for a specific example of the R mailing list.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(T\) :

Measurement period over which messages between individuals are recorded

\(n_{ij}\) :

Number of messages sent from \(i\) to \(j\) during time \(T\)

\(N\) :

Total number of individuals, i.e., nodes in the graph, communicating during \(T\)

\(M\) :

Total number of recorded messages, i.e., directed link, \(M=\sum _{i,j=1}^N n_{ij}\)

\(\delta _{a,b}\) :

Kronecker delta defined by \(\delta _{a,b}={\left\{ \begin{array}{ll} 1 &{} a=b \\ 0 &{} a\ne b \end{array}\right. }\)

\(L\) :

Total number of directed links, \(L=\sum _{i,j=1}^N 1-\delta _{0,n_{ij}}\)

\(n_i^{\mathrm{out}}\) :

Number of outgoing messages from node \(i\), \(n_i^{\mathrm{out}}=\sum _{j=1}^N n_{ij}\)

\(n_i^{\mathrm{in}}\) :

Number of incoming messages to node \(i\), \(n_i^{\mathrm{in}}=\sum _{j=1}^N n_{ji}\)

\(d_i^{\mathrm{out}}\) :

Outgoing degree of node \(i\)

\(d_i^{\mathrm{in}}\) :

Incoming degree of node \(i\)

\(d_i\) :

Degree of node \(i\)

\(\Delta n_i\) :

Difference of outgoing and incoming messages of node \(i\)

\(P(n)\) :

Probability that \(n\) messages are sent on a link, \(P(n)= \sum _{i,j=1}^N \delta _{n,n_{ij}}/N(N-1)\)

\(\mathcal {A}\) :

Adjacency matrix with matrix elements \(\mathcal {A}_{ij}=1-\delta _{0,n_{ij}}\)

\(w_{ij}\) :

Message rate from \(i\) to \(j\) estimated by measured \(n_{ij}\) over \(T\)

\(\mathcal {W}\) :

Rate matrix with matrix elements \(\mathcal {W}_{ij}=w_{ij}\)

\(\Delta H_{ij}\) :

Amount of entropy increased for each message sent from \(i\) to \(j\), \(\Delta H_{ij}=\ln \frac{w_{ij}}{w_{ji}}\)

\(H_{ij}\) :

Entropy production per link, \(H_{ij} = \left( n_{ij}-n_{ji}\right) \ln \frac{w_{ij}}{w_{ji}}\)

\(H_i\) :

Entropy production per node \(i\), \(H_i=\frac{1}{2}\sum _{j=1}^N H_{ij}\)

\(H\) :

Entropy production of total network, \(H=\sum _{i=1}^N H_i\)

\(h_i\) :

Node entropy production per message, \(h_i = \frac{H_i}{n_i^{\mathrm{out}}+n_i^{\mathrm{in}}}\)

\(P(w|n)\) :

Posterior distribution of message rates \(w\) conditional on observed messages \(n\)

\(P(w)\) :

Prior distribution of message rates; assumed to follow a power law in social networks with \(P(w) \sim w^{-1-\alpha }\); normalization with suitable lower cutoff leads to inverse gamma distribution \(P(w) \;=\; \frac{\beta ^{\alpha }}{\Gamma (\alpha )} {w^{-\alpha -1} e^{-\beta /w}}\)

\(\alpha\) :

Shape parameter of the inverse gamma distribution

\(\beta\) :

Lower cutoff parameter for the rate \(w\) concerning inverse gamma distribution

\(P(n)\) :

Normalizing marginal likelihood

\(\langle \ln w \rangle _n\) :

Expectation value for given \(n\), \(\langle \ln w \rangle _n \;=\; \int \limits _0^{\infty } \mathrm{d}w\, \ln w P(w|n)\)

\(K_\nu (z)\) :

Modified Bessel function of the second kind and \(z=2\sqrt{\beta T}\)

References

  • Andrieux D, Gaspard P (2004) Fluctuation theorem and onsager reciprocity relations. J Chem Phys 121(13)

  • Andrieux D, Gaspard P, Ciliberto S, Garnier N, Joubaud S, Petrosyan A (2007) Entropy production and time asymmetry in nonequilibrium fluctuations. Phys Rev Lett 98:150601

    Article  Google Scholar 

  • Barnes NG, Andonian J. (2011) The 2011 fortune 500 and social media adoption: Have america’s largest companies reached a social media plateau? http://www.umassd.edu/cmr/socialmedia/2011fortune500/

  • Bilgin C, Yener B (2010) Dynamic network evolution: models, clustering, anomaly detection. Technical report, Rensselaer University, NY

  • Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social networks. In: Proceedings of the 2006 international workshop on Mining software repositories. ACM, pp 137–143

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, New York

    MATH  Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177

    Article  MATH  Google Scholar 

  • Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw 33(1):309–320

    Article  Google Scholar 

  • Chen H, Shen H, Xiong J, Tan S, Cheng X (2006) Social network structure behind the mailing lists: Ict-iiis at trec 2006 expert finding track. In: Voorhees EM, Buckland LP (eds) Proceedings of the fifteenth text retrieval conference, TREC 2006, volume Special Publication 500–272. National Institute of Standards and Technology (NIST)

  • Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inf Sci 181(1):57–78

    Article  MathSciNet  MATH  Google Scholar 

  • Ebel H, Mielsch L-I, Bornholdt S (2002) Scale-free topology of e-mail networks. Phys Rev E 66 (2002). 10.1103/PhysRevE.66.035103

  • Fagiolo G (2007) Clustering in complex directed networks. Phys Rev E 76(2):026107

    Article  MathSciNet  Google Scholar 

  • Fazeen M, Dantu R, Guturu P (2011) Identification of leaders, lurkers, associates and spammers in a social network: context-dependent and context-independent approaches. Soc Netw Anal Min 1(3):241–254

    Article  Google Scholar 

  • Garrido A (2011) Symmetry in complex networks. Symmetry 3(1):1–15. doi:10.3390/sym3010001

  • Gilbert F, Simonetto P, Zaidi F, Jourdan F, Bourqui R (2011) Communities and hierarchical structures in dynamic social networks: analysis and visualization. Soc Netw Anal Min 1(2):83–95

    Article  Google Scholar 

  • Gómez-Gardeñes J, Latora V (2008) Entropy rate of diffusion processes on complex networks. Phys Rev E 78(6):065102

    Article  Google Scholar 

  • Hirth M, Lehrieder F, Oberste-Vorth S, Hoßfeld T, Tran-Gia P (2012) Wikipedia and its network of authors from a social network perspective. In: International conference on communications and electronics (ICCE), Hue, Vietnam

  • Hoßfeld T, Hirth M, Tran-Gia P (2011a) Modeling of crowdsourcing platforms and granularity of work organization in future internet. In: International teletraffic congress (ITC), San Francisco

  • Hoßfeld T, Lehrieder F, Hock D, Oechsner S, Despotovic Z, Kellerer W, Michel M (2011b) Characterization of bittorrent swarms and their distribution in the internet. Comput Netw 55(5)

  • Jin EM, Girvan M, Newman MEJ (2001) Structure of growing social networks. Phys Rev E 64(4):046132–046139. doi:10.1103/PhysRevE.64.046132

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90

    Article  MathSciNet  MATH  Google Scholar 

  • Kourtellis N, Alahakoon T, Simha R, Iamnitchi A, Tripathi R (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3(4):899–914

    Article  Google Scholar 

  • Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp 177–187

  • Mihaljev T, de Arcangelis L, Herrmann HJ (2011) Interarrival times of message propagation on directed networks. Phys Rev E 84:026112

    Article  Google Scholar 

  • Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet, measurement, pp. 29–42

  • Moler C (2011) Experiments with matlab. The MathWorks Co, Natick

    Google Scholar 

  • Mowshowitz A, Dehmer M (2010) A symmetry index for graphs. Symmetr Cult Sci 21(4):321–327

  • Mowshowitz A, Dehmer M (2012) Entropy and the complexity of graphs revisited. Entropy 14(3):559–570

    Article  MathSciNet  MATH  Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical Report 1999–66, Stanford InfoLab

  • Pincus SM, Huang W-M (1992) Approximate entropy: statistical properties and applications. Commun Stat Theory Methods 21(11):3061–3077

    Article  MATH  Google Scholar 

  • R Mailing Lists. http://tolstoy.newcastle.edu.au/R/ (2013)

  • Sallaberry A, Zaidi F, Melanton G (2013) Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc Netw Anal Min 3(3):597–609

    Article  Google Scholar 

  • Schnakenberg J (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Rev Mod Phys 48(4):571–585. doi:10.1103/RevModPhys.48.571

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464. doi:10.1103/PhysRevLett.85.461

  • Seifert U (2005) Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys Rev Lett 95(4):040602–040605. doi:10.1103/PhysRevLett.95.040602

  • Sinatra R, Gómez-Gardeñes J, Lambiotte R, Nicosia V, Latora V (2011) Maximal-entropy random walks in complex networks with limited information. Phys Rev E 83:030103

    Article  Google Scholar 

  • Smilkov D, Kocarev L (2012) Influence of the network topology on epidemic spreading. Phys Rev E 85:016114

    Article  Google Scholar 

  • Tietz C, Schuler S, Speck T, Seifert U, Wrachtrup J (2006) Measurement of stochastic entropy production. Phys Rev Lett 97:050602

    Article  Google Scholar 

  • Vasudevan M, Deo N (2012) Efficient community identification in complex networks. Soc Netw Anal Min 2(4):345–359

    Article  Google Scholar 

  • Wang J, De Wilde P (2004) Properties of evolving e-mail networks. Phys Rev E 70:066121

    Article  Google Scholar 

  • West J, Lacasa L, Severini S, Teschendorff A (2012) Approximate entropy of network parameters. Phys Rev E 85:046111

    Article  Google Scholar 

  • Xiao Y-H, Wu W-T, Wang H, Xiong M, Wang W (2008) Symmetry-based structure entropy of complex networks. Phys A Stat Mech Appl 387(11):2611–2619

  • Zeraati S, Jafarpour FH, Hinrichsen H (2012) Entropy production of nonequilibrium steady states with irreversible transitions. J Stat Mech Theory Exp 2012(12):L12001

    Article  MathSciNet  Google Scholar 

  • Zhu C, Kuh A, Wang J, De Wilde P (2006) Analysis of an evolving email network. Phys Rev E 74:046109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hoßfeld.

Additional information

This article is part of the Topical Collection on Social Systems as Complex Networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoßfeld, T., Burger, V., Hinrichsen, H. et al. On the computation of entropy production in stationary social networks. Soc. Netw. Anal. Min. 4, 190 (2014). https://doi.org/10.1007/s13278-014-0190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-014-0190-8

Keywords

Navigation