Social Network Analysis and Mining

, Volume 2, Issue 2, pp 169–187

Trends in science networks: understanding structures and statistics of scientific networks

  • Miray Kas
  • Kathleen M. Carley
  • L. Richard Carley
Original Article

Abstract

The growing of availability of electronic resources over the Internet enables rapid dissemination of the ideas and changes in the trends and the interaction patterns. In this work, we focus on dynamic, evolving social networks which exhibit numerous features that are also of interest to many researchers in non-social fields such as statistical physics, biology, applied mathematics, and computer science. We investigate how a specific research area (high-energy physics) changes over time, by building complex, interlinked citation, publication, and co-publication networks that evolve and expand constantly through the emergence of new papers and authors. Following an interdisciplinary approach, we perform a wide-ranging analysis of the high-energy physics dataset using techniques such as social networks centrality analysis, topological analysis, investigation of power law characteristics, time series analysis of publication and collaboration frequencies, as well as spatiotemporal analysis to discuss relationships among involved countries.

References

  1. Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Proceedings of the European conference on machine learning and knowledge discovery in databases: Part I. Springer-Verlag, Slovenia, pp 13–28Google Scholar
  2. Albert R, Barabasi A (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85(24):5234–5237CrossRefGoogle Scholar
  3. Allison PD, Long JS, Krauze TK (1982) Cumulative advantage and inequality in science. Am Sociol Rev 47:615–625CrossRefGoogle Scholar
  4. Barabasi A (2002) Linked: the new science of networks. Perseus Publishing, CambridgeGoogle Scholar
  5. Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetCrossRefGoogle Scholar
  6. Barabasi A, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A: Stat Mech Appl 311(3–4):590–614MathSciNetMATHCrossRefGoogle Scholar
  7. Batty M (2008) The size, scale and shape of cities. Science 319(5864):769–771CrossRefGoogle Scholar
  8. Bauer K, Bakkalbasi N (2005) An examination of citation counts in a new scholarly communication environment. D-Lib Magazine 11(9). doi:10.1045/september2005-bauer. http://dx.doi.org/10.1045/september2005-bauer
  9. Borner K, Maru J, Goldstone R (2004) The simultaneous evolution of author and paper networks. Proc Natl Acad Sci USA 101:5266–5273CrossRefGoogle Scholar
  10. Brookhaven National Laboratories (2011) Star collaboration. Retrieved from http://www.star.bnl.gov/
  11. Carley KM (1990) Structural constraints on communication: the diffusion of the homomorphic signal analysis technique through scientific fields. J Math Sociol 15(3–4):207–246CrossRefGoogle Scholar
  12. Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput Surv 38(1):1–78CrossRefGoogle Scholar
  13. Clauset A, Young M, Gleditsch K (2007) On the frequency of severe terrorist attacks. J Confl Resolut 51(58):58–88CrossRefGoogle Scholar
  14. Clauset A, Shalizi CR, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703MathSciNetMATHCrossRefGoogle Scholar
  15. Cole JR, Cole S (1973) Social stratification in science. University of Chicago Press, ChicagoGoogle Scholar
  16. Cornell University (2011) Retrieved from Cornell University Library (arXiv): http://arxiv.org/
  17. Crane D (1972) Invisible colleges: diffusion of knowledge in scientific communities. University of Chicago Press, ChicagoGoogle Scholar
  18. De Bellis N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics. Scarecrow Press, LanhamGoogle Scholar
  19. de Solla Price DJ (1965) Networks of scientific paper. Science 149(3683):510–515CrossRefGoogle Scholar
  20. de Solla Price DJ, Beaver D (1966) Collaboration in an invisible college. Am Psychol 21(11):1011–1018CrossRefGoogle Scholar
  21. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  22. Freeman LC (2004) The development of social network analysis: a study in the sociology of science. Empirical Press, VancouverGoogle Scholar
  23. Friedkin NE (1998) A structural theory of social influence. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Hamming R (1950) Error detecting and error correcting codes. Bell Syst Tech J 29(2):147–160MathSciNetGoogle Scholar
  25. Harande Y (2001) Author productivity and collaboration: an investigation of the relationship using the literature of technology. Libri 51(2):124–127CrossRefGoogle Scholar
  26. Hill BM (1975) A simple general approach to inference about the tail of a distribution. Annal Stat 3(5):1163–1174MATHCrossRefGoogle Scholar
  27. Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102(46):16569–16572CrossRefGoogle Scholar
  28. Hood WW, Wilson CS (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2):291–314CrossRefGoogle Scholar
  29. Jones DL (2011) Overview of FFT algorithms. Retrieved from http://cnx.org/content/m12026/latest/?collection=col10281/latest
  30. Krackhardt D (1987) QAP partialling as a test of spuriousness. Social Networks 9(2):171–186MathSciNetCrossRefGoogle Scholar
  31. Krackhardt D (1992) A caveat on the use of the quadratic assignment procedure. J Quant Anthropol 3(4):279–296Google Scholar
  32. Kuhn TS (1970) The structure of scientific revolutions. University of Chicago Press, ChicagoGoogle Scholar
  33. Leicht E, Clarkson G, Shedden K, Newman M (2007) Large-scale structure of time evolving citation networks. Eur Phys J B-Condensed Matter Complex Syst 59(1):75–83MATHCrossRefGoogle Scholar
  34. Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Las Vegas, pp 462–470Google Scholar
  35. Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436CrossRefGoogle Scholar
  36. Leydesdorff L (2007) Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. J Am Soc Inf Sci Technol 58(9):1303–1319CrossRefGoogle Scholar
  37. Lievrouw LA, Carley KM (1990) Changing patterns of communication among scientists in an era of telesciences. Technol Soc 12(4):457–477CrossRefGoogle Scholar
  38. Martin JL (2002) Power, authority, and the constraint of belief systems. Am J Sociol 107(4):861–904CrossRefGoogle Scholar
  39. McCulloh I (2008) Detecting changes in dynamic social networks. Carnegie Mellon University, Institute for Software Research, CASOS, PittsburghGoogle Scholar
  40. Merton RK (1968) The Matthew effect in science. Science 159(3810):56–63CrossRefGoogle Scholar
  41. Moody J (2004) The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am Sociol Rev 69(2):213–238CrossRefGoogle Scholar
  42. Müller-Birn C, Meuthrath B, Erber A, Burkhart S, Baumgrass A, Lehmann J et al (2011) Seeing similarity in the face of difference: enabling comparison of online production systems. Soc Netw Anal Min 1(2):127–142CrossRefGoogle Scholar
  43. Nanda S, Kotz D (2011) Social network analysis plugin (SNAP) for mesh networks. Wireless Communications and Networking Conference (WCNC). IEEE, pp 725–730Google Scholar
  44. Newman M (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci 98(2):404–409MathSciNetMATHCrossRefGoogle Scholar
  45. Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetMATHCrossRefGoogle Scholar
  46. Newman M (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205CrossRefGoogle Scholar
  47. Newman M (2005) Power laws, pareto distributions, and Zipf’s Law. Contemp Phys 46:323–351CrossRefGoogle Scholar
  48. Nicolaisen J (2010) Bibliometrics and citation analysis: from the science citation index to cybermetrics. J Am Soc Inform Sci Technol (JASIST) 61(1):205–207CrossRefGoogle Scholar
  49. Rosen D, Barnett G, Kim J (2011) Social networks and online environments: when science and practice co-evolve. Soc Netw Anal Min 1(1):27–42CrossRefGoogle Scholar
  50. Sabin WE (2008) Discrete-signal analysis and design. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  51. Scott J (1988) Social network analysis. Sociology 22(1):109–127CrossRefGoogle Scholar
  52. Scott J (2011) Social network analysis: developments, advances, and prospects. Soc Netw Anal Min 1(1):21–26CrossRefGoogle Scholar
  53. Sharara H, Singh L, Getoor L, Mann J (2011) Understanding actor loyalty to event-based groups in affiliation networks. Soc Netw Anal Min 1(2):115–126CrossRefGoogle Scholar
  54. SIGKDD CUP (2003) Retrieved from http://www.sigkdd.org/kdd2003/kddcup.html
  55. Smith SW (2011) How the FFT works? Retrieved from http://www.dspguide.com/ch12/2.htm
  56. Subramanyam K (1983) Bibliometric studies of research collaboration: a review. J Inform Sci 6(1):33–38CrossRefGoogle Scholar
  57. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, CambridgeGoogle Scholar
  58. White HD, Griffith BC (1981) Author co-citation: a literature measure of intellectual structure. J Am Soc Inform Sci 32(3):163–171CrossRefGoogle Scholar
  59. White HD, McCain KW (1998) Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J Am Soc Inform Sci 49(4):327–355Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Miray Kas
    • 1
  • Kathleen M. Carley
    • 1
  • L. Richard Carley
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations