Social Network Analysis and Mining

, Volume 2, Issue 1, pp 31–37 | Cite as

Positive influence dominating sets in power-law graphs

Original Article

Abstract

Finding the minimum Positive Influence Dominating Set (PIDS) is a problem arisen from the social network applications. The problem has been studied on general random graphs. However, the social networks is presented more precisely by power-law graphs. One of the most important properties of social networks is the power-law degree distribution. In this paper, we focus on the PIDS problem in power-law graphs and prove that the greedy algorithm has a constant approximation ratio. Simulation results also demonstrate that greedy algorithm can effectively select a small scale PIDS set.

Keywords

Social networks Positive influence dominating set problem Greedy algorithm Power-law distribution 

References

  1. Aiello W, Chung F, Lu L (2001) A random graph model for power-law graphs. Exp Math 10:53–66MathSciNetMATHGoogle Scholar
  2. Alan M, Massimiliano M, Peter G, Bobby B (2007) Measurement and analysis of online social networks. ACM SIGCOMM IMC. doi:10.1145/1298306.1298311
  3. Aris A, Ravi K, Mohammad M (2008) Influence and correlation in social networks. ACM SIGKDD. doi:10.1145/1401890.1401897
  4. Baden R, Bender A, Spring N, Bhattacharjee B, Starin D (2009) Persona: an online social network with user-defined privacy. ACM SIGCOMM. doi:10.1145/1592568.1592585
  5. Barabsi A, Bonabeau E (2003) Scale-free networks. Sci Am 288:60–69CrossRefGoogle Scholar
  6. Bhattacharyya P, Garg A, Wu S (2011) Analysis of user keyword similarity in online social networks. SOCNET. doi:10.1007/s13278-010-0006-4
  7. Cha M, Mislove A, Gummadi K (2009) A measurement-driven analysis of information propagation in the flickr social network. WWW, pp 721–730Google Scholar
  8. Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data, SIAM Rev. doi:10.1137/070710111
  9. David K, Jon K, Eva T (2003) Maximizing the spread of influence through a social network. ACM SIGKDD, pp 137–146Google Scholar
  10. Dougherty H (2010) Facebook Reaches Top Ranking in US. Hitwise Intelligence. http://weblogs.hitwise.com/heather-dougherty/2010/03/facebook_reaches_top_ranking_i.html (accessed 15 March 2010)
  11. Du D, Ko K, Hu X (2010) Design and analysis of approximation algorithms. ManuscriptsGoogle Scholar
  12. Eubank S, Kumar V, Marathe M, Srinivasan A, Wang N (2004) Structural and algorithmic aspects of massive social networks. ACM SIAM, pp 718–727Google Scholar
  13. Gross R, Acquisti A (2005) Information revelation and privacy in online social networks. ACM workshop on Privacy in the electronic society, pp 71–80Google Scholar
  14. Kayaalp M, Özyer T, Özyer S (2011) A mash-up application utilizing hybridized filtering techniques for recommending events at a social networking site. SOCNET. doi:10.1007/s13278-010-0010-8
  15. Nazir A, Raza S, Chuah C (2008) Unveiling facebook: a measurement study of social network based applications. ACM SIGCOMM IMC. doi:10.1145/1452520.1452527
  16. Rosen D, Barnett G, Kim J (2011) Social networks and online environments: when science and practice co-evolve. SOCNET. doi:10.1007/s13278-010-0011-7
  17. Saravanan M, Prasad G, Karishma S, Suganthi D (2011) Analyzing and labeling telecom communities using structural properties. SOCNET. doi:10.1007/s13278-011-0020-1
  18. Schneider F, Feldmann A, Krishnamurthy B, Willinger W (2009) Understanding online social network usage from a network perspective. ACM SIGCOMM IMC, pp 35–48Google Scholar
  19. Shishir Bharathi M, Kempe D (2007) Competitive influence maximization in social networks. WINE. doi:10.1007/978-3-540-77105-0-31
  20. Wang F, Camacho E, Xu K (2009) Positive influence dominating set in online social networks. LNCS, pp 313-321Google Scholar
  21. Wang F, Du H, Camacho E, Xu K, Lee W, Shi Y, Shan S (2011) On positive influence dominating sets in social networks. Theor Comput Sci. doi:10.1016/j.tcs.2009.10.001
  22. Willinger W, Rejaie R, Torkjazi M, Valafar M, Maggioni M (2010) Research on online social networks: time to face the real challenges. SIGMETRICS Perform. Eval. Rev. doi:10.1145/1710115.1710125

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of ScienceXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA
  3. 3.Division of Mathematical and Natural SciencesArizona State UniversityPhoenixUSA

Personalised recommendations