Tumor Biology

, Volume 37, Issue 12, pp 15433–15436 | Cite as

MicroRNAs as biomarkers in the diagnosis and treatment of chondrosarcoma

Review

Abstract

MicroRNAs are a group of small non-coding RNAs that play a complex role in post-transcriptional gene expression and can be used for diagnosis, prognosis, and targeted treatment. Despite advances in diagnosis and treatment of chondrosarcoma, its underpinning molecular mechanisms still remain elusive. Given the recent increasing knowledge base of micro RNA (miRNA) roles in neoplasia, both as oncogenes and tumor suppressor genes, this review will focus on discussing the available data on expression profiles and potential roles of miRNA in chondrosarcoma. Accumulating evidence suggests that microRNAs have the potential to be used in the future for clinical management of chondrosarcoma.

Keywords

microRNA miRNA Chondrosarcoma Diagnosis Prognosis Therapy 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    MiRNAra J. Bone tumors. Philadelphia: Lea and Febiger; 1989.Google Scholar
  2. 2.
    Frassica FJ, Unni KK, Beabout JW, Sim FH. Dedifferentiated chondrosarcoma. A report of the clinicopathological features and treatment of seventy-eight cases. J Bone Joint Surg Am. 1986;68(8):1197–205.CrossRefPubMedGoogle Scholar
  3. 3.
    Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther. 2015;13(8):2903–14.Google Scholar
  4. 4.
    Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodríguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther. 2014;21(7):1327–38.Google Scholar
  5. 5.
    Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int J Mol Sci. 2015;16(10):24895–917.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yan B, Guo Q, Fu FJ, et al. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther. 2015;3(8):539–48.Google Scholar
  7. 7.
    Lu N, Lin T, Wang L, et al. Association of SOX4 regulated by tumor suppressor miR-30a with poor prognosis in low-grade chondrosarcoma. Tumour Biol. 2015;36(5):3843–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Yoshitaka T, Kawai A, Miyaki S, et al. Analysis of microRNAs expressions in chondrosarcoma. J Orthop Res. 2013;31(12):1992–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhu Z, Wang CP, Zhang YF, Nie L. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR. Asian Pac J Cancer Prev. 2014;15(2):917–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Mak IW, Singh S, Turcotte R, Ghert M. The epigenetic regulation of SOX9 by miR-145 in human chondrosarcoma. J Cell Biochem. 2015;116(1):37–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Sun X, Wei L, Chen Q, Terek RM. MicroRNA regulates vascular endothelial growth factor expression in chondrosarcoma cells. Clin Orthop Relat Res. 2015;473(3):907–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Mutlu S, Mutlu H, Kirkbes S, et al. The expression of miR-181a-5p and miR-371b-5p in chondrosarcoma. Eur Rev Med Pharmacol Sci. 2015;19(13):2384–8.PubMedGoogle Scholar
  13. 13.
    Goudarzi PK, Taheriazam A, Asghari S, et al. Downregulation of miR-185 and upregulation of miR-218 expression may be potential diagnostic and prognostic biomarkers of human chondrosarcoma. Tumour Biol. 2015.Google Scholar
  14. 14.
    Li J, Wang L, Liu Z, et al. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9. Oncotarget. 2015;6(28):26216–29.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tsai CH, Tsai HC, Huang HN, et al. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget. 2015;6(1):258–70.PubMedGoogle Scholar
  16. 16.
    Aili A, Chen Y, Zhang H. MicroRNA?10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain? Derived neurotrophic factor. Mol Med Rep. 2016;13(1):441–6.PubMedGoogle Scholar
  17. 17.
    Jiang D, Zheng X, Shan W, Shan Y. The overexpression of miR-30a affects cell proliferation of chondrosarcoma via targeting Runx2. Tumour Biol. 2016;37(5):5933–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Sun X, Charbonneau C, Wei L, Chen Q, Terek RM. miR-181a targets RGS16 to promote chondrosarcoma growth, angiogenesis, and metastasis. Mol Cancer Res. 2015;13(9):1347–57.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Galoian K, Qureshi A, D’Ippolito G, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47(2):465–72.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chia S, Gandhi S, Joy AA, et al. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer. Curr Oncol. 2015;22(1):33–48.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bertacchini J, Heidari N, Mediani L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 2015;72(12):2337–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Ying J, Xu Q, Liu B, Zhang G, Chen L, Pan H. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis. Onco Targets Ther. 2015;8:2427–33.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK a master energy regulator for gonadal function. Front Neurosci. 2015;9:235.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zadra G, Batista JL, Loda M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res. 2015;13(7):1059–72.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hardie DG. AMPK-sensing energy while talking to other signaling pathways. Cell Metab. 2014;20(6):939–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu GT, Huang YL, Tzeng HE, Tsai CH, Wang SW, Tang CH. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells. Cancer Lett. 2015;357(2):476–87.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu GT, Chen HT, Tsou HK, et al. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells. Oncotarget. 2014;5(21):10718–31.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horng CT, Shieh PC, Tan TW, Yang WH, Tang CH. Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCδ and c-Src signaling pathway. Int J Mol Sci. 2014;15(7):11760–72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tan TW, Chou YE, Yang WH, Hsu CJ, Fong YC, Tang CH. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharmacol. 2014;22(1):107–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Verma S, Singh A, Mishra A. Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol. 2013;35(3):473–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Liang W, Li X, Li Y, et al. Gallic acid induces apoptosis and inhibits cell migration by upregulating miR-518b in SW1353 human chondrosarcoma cells. Int J Oncol. 2014;44(1):91–8.PubMedGoogle Scholar
  32. 32.
    Tzeng HE, Chen PC, Lin KW, et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond). 2015;129(2):147–58.CrossRefGoogle Scholar
  33. 33.
    Sun X, Charbonneau C, Wei L, Yang W, Chen Q, Terek RM. CXCR4-targeted therapy inhibits VEGF expression and chondrosarcoma angiogenesis and metastasis. Mol Cancer Ther. 2013;12(7):1163–70.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang P, Chen SH, Hung WC, et al. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene. 2015;34(35):4558–69.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Orthopedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Medical Oncology, General Hospital of The Yangtze River ShippingWuhanChina
  3. 3.Department of Orthopedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations