Advertisement

Tumor Biology

, Volume 37, Issue 12, pp 16039–16051 | Cite as

MiRNA-binding site functional polymorphisms in DNA repair genes RAD51, RAD52, and XRCC2 and breast cancer risk in Chinese population

  • Jingjing Cao
  • Chenglin Luo
  • Rui Peng
  • Qiaoyun Guo
  • Kaijuan Wang
  • Peng Wang
  • Hua Ye
  • Chunhua Song
Original Article

Abstract

RAD51, RAD52, and XRCC2 are all involved in DNA homologous recombinational repair, and there are interactions among those genes. Polymorphisms in 3′-UTR of DNA repair genes may change DNA repair capacity by regulating gene expression. However, potential regulatory variants affecting their expression remain largely unexplored. Five miRNA-binding site SNPs (rs7180135 and rs45549040 in RAD51, rs1051669 and rs7963551 in RAD52 and rs3218550 in XRCC2) selected by bioinformatics method were genotyped in 498 breast cancer (BC) patients and 498 matched controls in Chinese population. Association between SNPs and BC risk was analyzed by adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) in unconditional logistic regression model. Quantitative real-time (qRT) PCR and Western Blot assays were used to calculate the relative expression of RAD52 in recombinant plasmid-pGenesil-1-let-7b group and let-7b-inhibitor group. Gene–reproductive factors interactions were evaluated by multifactor dimensionality reduction (MDR) method. We found that individuals with AC (OR 0.684, 95%CI 0.492–0.951) and CC (OR 0.317, 95%CI 0.200–0.503) genotypes of rs7963551 had a significantly lower risk of breast cancer and qRT-PCR and Western Blot revealed that let-7b might downregulate the expression of RAD52 in MCF-7 and SKBR-3 cells. A significant interaction between the number of pregnancy (≥2) and rs7963551 (Ars7963551) was found to increase breast cancer risk by 2.63-fold (OR 2.63; 95%CI 2.03–3.42). In summary, the miRNA-binding SNPs in DNA repair genes RAD51, RAD52, and XRCC2 and their interaction with reproductive factors might play important roles in the development of BC, and let-7b might downregulate RAD52 expression in MCF-7 and SKBR-3 cells.

Keywords

Breast cancer miRNA-binding site Genetic susceptibility Interaction DNA repair genes Let-7b 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (81202278) and Medical Science and technology key projects of Henan Province (201303005 and 20150374).

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Fan L, Strasser-Weippl K, Li J-J, St Louis J, Finkelstein DM, Yu K-D, et al. Breast cancer in China. The Lancet Oncology. 2014;15(7):e279–e89. doi: 10.1016/s1470-2045(13)70567-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32. doi: 10.3322/caac.21338.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang B, Beeghly-Fadiel A, Long J, Zheng W. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. The Lancet Oncology. 2011;12(5):477–88. doi: 10.1016/s1470-2045(11)70076-6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. The Lancet Oncology. 2001;2(3):133–40. doi: 10.1016/s1470-2045(00)00254-0.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85. doi: 10.1056/NEJMra0804615.CrossRefPubMedGoogle Scholar
  7. 7.
    Dekanty A, Barrio L, Milan M. Contributions of DNA repair, cell cycle checkpoints and cell death to suppressing the DNA damage-induced tumorigenic behavior of drosophila epithelial cells. Oncogene. 2015;34(8):978–85. doi: 10.1038/onc.2014.42.CrossRefPubMedGoogle Scholar
  8. 8.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204. doi: 10.1016/j.molcel.2010.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chatterjee S, Pal JK. Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biology of the cell/under the auspices of the European Cell Biology Organization. 2009;101(5):251–62. doi: 10.1042/BC20080104.CrossRefGoogle Scholar
  10. 10.
    Zhang W, Liu J, Wang G. The role of microRNAs in human breast cancer progression. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(7):6235–44. doi: 10.1007/s13277-014-2202-8.CrossRefGoogle Scholar
  11. 11.
    Mishra PJ, Mishra PJ, Banerjee D, Bertino JR. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle. 2008;7(7):853–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2008;19(1):92–105. doi: 10.1101/gr.082701.108.CrossRefPubMedGoogle Scholar
  13. 13.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278–84. doi: 10.1038/ng2135.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen X, Xu Y, Cao X, Chen Y, Jiang J, Wang K. Associations of Il-1 family-related polymorphisms with gastric cancer risk and the role of Mir-197 in Il-1f5 expression. Medicine. 2015;94(47):e1982. doi: 10.1097/MD.0000000000001982.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Landi D, Moreno V, Guino E, Vodicka P, Pardini B, Naccarati A, et al. Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat Res. 2011;717(1–2):109–15. doi: 10.1016/j.mrfmmm.2010.10.002.CrossRefPubMedGoogle Scholar
  16. 16.
    Joshi AD, Lindstrom S, Husing A, Barrdahl M, Vander Weele TJ, Campa D, et al. Additive interactions between susceptibility single-nucleotide polymorphisms identified in genome-wide association studies and breast cancer risk factors in the breast and prostate cancer cohort consortium. Am J Epidemiol. 2014;180(10):1018–27. doi: 10.1093/aje/kwu214.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu Z, Wang P, Song C, Wang K, Yan R, Li J, et al. Evaluation of miRNA-binding-site SNPs of MRE11A, NBS1, RAD51 and RAD52 involved in HRR pathway genes and risk of breast cancer in China. Molecular genetics and genomics: MGG. 2015;290(3):1141–53. doi: 10.1007/s00438-014-0983-5.CrossRefPubMedGoogle Scholar
  18. 18.
    Thacker J. A surfeit of RAD51-like genes? Trends Genet. 1999;15(5):166–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Tambini CE, Spink KG, Ross CJ, Hill MA, Thacker J. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst). 2010;9(5):517–25. doi: 10.1016/j.dnarep.2010.01.016.CrossRefGoogle Scholar
  20. 20.
    Richardson C. RAD51, genomic stability, and tumorigenesis. Cancer Lett. 2005;218(2):127–39. doi: 10.1016/j.canlet.2004.08.009.CrossRefPubMedGoogle Scholar
  21. 21.
    Wasson MK, Chauhan PS, Singh LC, Katara D, Dev Sharma J, Zomawia E, et al. Association of DNA repair and cell cycle gene variations with breast cancer risk in northeast Indian population: a multiple interaction analysis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(6):5885–94. doi: 10.1007/s13277-014-1779-2.CrossRefGoogle Scholar
  22. 22.
    Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK. RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res. 2007;67(20):9658–65. doi: 10.1158/0008-5472.CAN-07-0290.CrossRefPubMedGoogle Scholar
  23. 23.
    Maacke HJK, Opitz S, Miska S, Yuan Y, Hasselbach L, Lüttges J, Kalthoff H, Stürzbecher HW. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene. 2000;19(23):2791–5. doi: 10.1038/sj.onc.1203578.CrossRefPubMedGoogle Scholar
  24. 24.
    Han H, Bearss DJ, Walden Browne L, Calaluce R, Nagle RB, Von Hoff DD. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res. 2002;62:2890–6.PubMedGoogle Scholar
  25. 25.
    Connell Philipp, Jayathilak K, Haraf Danielj, Weichselbaum Ralphr, Vokes Everette, Lingen Markw. Pilot study examining tumor expression of RAD51 and clinical outcomes in human head cancers. Int J Oncol. 2006;28:1113–9.PubMedGoogle Scholar
  26. 26.
    Mitra A, Jameson C, Barbachano Y, Sanchez L, Kote-Jarai Z, Peock S, et al. Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology. 2009;55(6):696–704. doi: 10.1111/j.1365-2559.2009.03448.x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qiao GB, Wu YL, Yang XN, Zhong WZ, Xie D, Guan XY, et al. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer. 2005;93(1):137–43. doi: 10.1038/sj.bjc.6602665.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li Y, Yu H, Luo RZ, Zhang Y, Zhang MF, Wang X, et al. Elevated expression of Rad51 is correlated with decreased survival in resectable esophageal squamous cell carcinoma. J Surg Oncol. 2011;104(6):617–22. doi: 10.1002/jso.22018.CrossRefPubMedGoogle Scholar
  29. 29.
    Hannay JA, Liu J, Zhu QS, Bolshakov SV, Li L, Pisters PW, et al. Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther. 2007;6(5):1650–60. doi: 10.1158/1535-7163.MCT-06-0636.CrossRefPubMedGoogle Scholar
  30. 30.
    Gasparinia P, Lovat F, Fassana M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, Huebner K, Croce CM. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A. 2014;111(12):4536–41. doi: 10.1073/pnas.1402604111.CrossRefGoogle Scholar
  31. 31.
    Choi YE, Pan Y, Park E, Konstantinopoulos P, De S, D’Andrea A, et al. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. Elife. 2014;3:e02445. doi: 10.7554/eLife.02445.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Game JC. DNA double-strand breaks and the RAD50-RAD57 genes in saccharomyces. Semin Cancer Biol. 1993;4(2):73–83.PubMedGoogle Scholar
  33. 33.
    Sung P, Trujillo KM, Van Komen S. Recombination factors of Saccharomyces cerevisiae. Mutat Res. 2000;451(1–2):257–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Parsons CA, Baumann P, Van Dyck E, West SC. Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO J. 2000;19(15):4175–81. doi: 10.1093/emboj/19.15.4175.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Milne GT, Weaver DT. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 1993;7(9):1755–65.CrossRefPubMedGoogle Scholar
  36. 36.
    HAYS SHARONL, Firmenich AA, MASSEY PHILIP, BANERJEE RONADIP, BERG PAUL. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol Cell Biol. 1998;18(7):4400–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein a. Nature. 1998;391(6665):407–10. doi: 10.1038/34950.CrossRefPubMedGoogle Scholar
  38. 38.
    Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69(3):1221–9. doi: 10.1158/0008-5472.CAN-08-2516.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xia Y, Zhu Y, Zhou X, Chen Y. Low expression of let-7 predicts poor prognosis in patients with multiple cancers: a meta-analysis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(6):5143–8. doi: 10.1007/s13277-014-1663-0.CrossRefGoogle Scholar
  40. 40.
    Han S, Gao F, Yang W, Ren Y, Liang X, Xiong X, Pan W, Zhou L, Zhou C, Ma F, Yang M. Identification of an SCLC susceptibility rs7963551 genetic polymorphism in a previously GWAS-identified 12p13.33 RAD52 lung cancer risk locus in the Chinese population. Int J Clin Exp Med. 2015;8(9):16528–35.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu C, Chen YD, Han S, Wei J, Ge Y, Pan W, et al. A RAD52 genetic variant located in a miRNA binding site is associated with glioma risk in Han Chinese. J Neuro-Oncol. 2014;120(1):11–7. doi: 10.1007/s11060-014-1527-x.CrossRefGoogle Scholar
  42. 42.
    Li Z, Guo Y, Zhou L, Ge Y, Wei L, Li L, et al. Association of a functional RAD52 genetic variant locating in a miRNA binding site with risk of HBV-related hepatocellular carcinoma. Mol Carcinog. 2015;54(9):853–8. doi: 10.1002/mc.22156.CrossRefPubMedGoogle Scholar
  43. 43.
    Jiang Y, Qin Z, Hu Z, Guan X, Wang Y, He Y, et al. Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis. 2013;34(3):689–93. doi: 10.1093/carcin/bgs373.CrossRefPubMedGoogle Scholar
  44. 44.
    Naccarati A, Vodickova L, Vodicka P, Rosa F, Di Gaetano C, Gemignani F, Pardini B, Vymetalkova V, Novotny J, Buchler T, Barone E, Levy M, Landi S, LudmilaPavel K. Double-strand break repair and colorectal cancer: gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget. 2015;7(17):23156–69. doi: 10.18632/oncotarget.6804.PubMedCentralGoogle Scholar
  45. 45.
    Miller KASD, Barsky D, Albala JS. Domain mapping of the Rad51 paralog protein complexes. Nucleic Acids Res. 2004;32(1):169–78. doi: 10.1093/nar/gkg925.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chun J, Buechelmaier ES, Powell SN. Rad51 Paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33(2):387–95. doi: 10.1128/MCB.00465-12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang Y, Wang H, Peng Y, Liu Y, Xiong T, Xue P, et al. The Arg188His polymorphism in the XRCC2 gene and the risk of cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(4):3541–9. doi: 10.1007/s13277-013-1468-6.CrossRefGoogle Scholar
  48. 48.
    Lin WY, Camp NJ, Cannon-Albright LA, Allen-Brady K, Balasubramanian S, Reed MW, et al. A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet. 2011;48(7):477–84. doi: 10.1136/jmedgenet-2011-100018.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perez LO, Crivaro A, Barbisan G, Poleri L, Golijow CD. XRCC2 R188H (rs3218536), XRCC3 T241 M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk. Pathol Oncol Res. 2013;19(3):553–8. doi: 10.1007/s12253-013-9616-2.CrossRefPubMedGoogle Scholar
  50. 50.
    Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90(4):734–9. doi: 10.1016/j.ajhg.2012.02.027.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast cancer research: BCR. 2010;12(6):R110. doi: 10.1186/bcr2797.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD, et al. Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst. 2011;103(16):1252–63. doi: 10.1093/jnci/djr265.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Epidemiology and Statistics, College of Public HealthZhengzhou UniversityZhengzhouChina
  2. 2.Department of Biological SciencesThe University of Texas at El PasoEl PasoUSA
  3. 3.Henan Key Laboratory of Tumor EpidemiologyZhengzhouChina

Personalised recommendations