Tumor Biology

, Volume 37, Issue 12, pp 16163–16176 | Cite as

Snail-activated long non-coding RNA PCA3 up-regulates PRKD3 expression by miR-1261 sponging, thereby promotes invasion and migration of prostate cancer cells

  • Jin-Hua He
  • Bao-Xia Li
  • Ze-Ping Han
  • Mao-Xian Zou
  • Li Wang
  • Yu-Bing Lv
  • Jia-Bin Zhou
  • Ming-Rong Cao
  • Yu-Guang Li
  • Jing-zhi Zhang
Original Article


Rapidly accumulated evidence has shown that long non-coding RNA (lncRNAs) disregulation is involved in human tumorigenesis in many cancers, including prostate cancer (PCa). LncRNAs can regulate essential pathways that contribute to tumor initiation and progression with tissue specificity, which suggests that lncRNAs could be valuable biomarkers and therapeutic targets. Prostate cancer antigen 3 (PCA3), also known as differential display code 3 (DD3), is one such lncRNA that maps to chromosome 9q21–22. PCA3 expression is highly specific to PCa. In the present study, the level of PCA3 expression in prostate cancer cells was reduced by small interfering RNA (siRNA). Subsequently, the ability of LNCaP cell proliferation, invasion, and migration of PCa was compromised both in vivo and in vitro with the occurrence of cell autophagy. Recently, a novel regulatory mechanism has been proposed in which RNAs cross talk via competing with the shared microRNAs (miRNAs). In addition, lncRNAs can directly interact with RNA-binding proteins and then bind to the gene promoter region to further regulate gene expression. The proposed competitive endogenous RNAs mediate the bioavailability of miRNAs on their targets, thus imposing another level of post-transcriptional regulation. Here, we demonstrated that binding of Snail to the promoter region of PCA3 could activate the expression of PCA3. Down-regulation of PCA3 by silencing could increase the expression of the miRNA-1261, which then targeted at the PRKD3 gene (protein kinase D3) through competitive sponging. In summary, these results suggest that the transcription factor, Snail, activated the expression of lncRNA PCA3, which could inhibit the translation of PRKD3 protein via competitive miR-1261 sponging, and thus high expression of PRKD3 further promoted invasion and migration of prostate cancer.


Long non-coding RNA microRNA-1261 Differential display code 3 Protein kinase D3 Prostate cancer cells Small interfering RNA sequences 



Long non-coding RNA




Small interfering RNA


Cell counting kit-8


Prostate cancer gene expression marker 1


Fetal bovine serum


Metastasis-associated lung adenocarcinoma transcript


Prostate cancer antigen 3


Castration-refractory prostate cancer


Transcription factor


Microtubule-associated protein 1 light chain 3


Protein kinase D3


Maternally-expressed gene 3


Polycomb repressive complex 2


Reverse transcription polymerase chain reaction


Horseradish peroxidase


Transcription factors


Prostate cancer

3′ UTR

3 terminal untranslated region


Small hair RNA


Competing endogenous RNA



This work was supported by grants from the Technical New Star of Zhujiang, Pan Yu districts, Guangzhou (No. 2014-special-15-3.09 and No:2013-special-15-6.09) and the Natural Science Foundation of China (No.81373520; No.81502557); the Administration of Traditional Chinese Medicine of Guangdong Province (20151057) and the Science and Technology Planning Project of Guangdong Province (No. 2015110); and the technology projects of Guangzhou medicine and health care (No.2016A011112).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA. 2013;63:11–30.Google Scholar
  2. 2.
    Roberts WB, Han M. Clinical significance and treatment of biochemical recurrence after definitive therapy for localized prostate cancer. Surgic Oncol. 2009;18:268–74.CrossRefGoogle Scholar
  3. 3.
    Han M, Partin AW, Pound CR, et al. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15 year Johns Hopkins experience. Urologic Clin North America. 2001;28:555–65.CrossRefGoogle Scholar
  4. 4.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–19.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Geisler S, Coller JRNA. In unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14:699–712.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 2014;1843:372–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu W, Kan X. Neural network cascade optimizes microRNA biomarker selection for nasopharyngeal cancer prognosis. PLoS One. 2014;9:e110537.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Avgeris M, Stravodimos K, Fragoulis EG, et al. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Brit J Cancer. 2013;108:2573–81.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Juan L, Wang G, Radovich M, et al. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genet. 2013;6:S7.Google Scholar
  11. 11.
    Zhang Z, Zhu Z, Watabe K, et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013;20:1558–68.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    He JH, Zhang JZ, Han ZP, Wang L, Lv Y, Li YG. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res. 2014;33:72–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol. 2013;190:2278–87.CrossRefPubMedGoogle Scholar
  14. 14.
    Popa I, Fradet Y, Beaudry G, et al. Identification of PCA3 (DD3) in prostatic carcinoma by in situ hybridization. Modern Pathol. 2007;20:1121–7.CrossRefGoogle Scholar
  15. 15.
    Bonfim-Silva R, Pimentel T, Valera ET, et al. Gene expression profile of long non-coding RNA EVF-2 in medulloblastoma cell lines and tissue samples. BMC Proc. 2013;7:61.CrossRefGoogle Scholar
  16. 16.
    Wierzbicki AT. The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol. 2012;15:517–22.CrossRefPubMedGoogle Scholar
  17. 17.
    He JH, Li YM, Li YG, et al. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med. 2013;5:1315–21.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang C, Fang X, Li W, et al. Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biocher Radiopharm. 2013;29:405–11.Google Scholar
  19. 19.
    Zhang L, Zhao Y, Ding W, et al. Autophagy regulates colistin-induced apoptosis in PC-12 cells. Antimicrob Agents Chemother. 2015;59:2189–93.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Alali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One. 2013;8:e53823.CrossRefGoogle Scholar
  22. 22.
    Chen J, Deng F, Singh SV, et al. Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCepsilon/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res. 2008;58:3844–53.CrossRefGoogle Scholar
  23. 23.
    Li JH, Liu S, Zhou H, LH Q, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Tao T, Li G, Dong Q, et al. Loss of SNAIL inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-/PKM2 signaling pathway in prostate cancer cells. Tumour Biol. 2014;35:8543–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One. 2013;8:e53823.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schalken JA, Hessels D, Verhaegh G. New target S for therapy in prostate cancer: differential display code 3(DD3 PCA3), a highly prostate cancer-specific gene. Urology. 2003;62:34–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Gandini O, Luci L, Stigliano A, et al. Is DD3 a new prostate specific gene? Anticancer Res. 2003;23:305–8.PubMedGoogle Scholar
  29. 29.
    Jacques B, de Kok, Gerald W, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.Google Scholar
  30. 30.
    Hessels D, Klein Gunnewiek JM, Van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44:8–16.CrossRefPubMedGoogle Scholar
  31. 31.
    Tinz M, Marberger M, Horvath S, et al. DD3PCA3 RNA analysis in urine: a new perspective for detecting prostate cancer. Eur Urol. 2004;46:182–7.CrossRefGoogle Scholar
  32. 32.
    De Kok JB, Verhaegh JW, Roelofs RW, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.PubMedGoogle Scholar
  33. 33.
    Javan B, Zlotta A, Remzi M, et al. Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1051 men. J Urol. 2000;163:1144–9.CrossRefGoogle Scholar
  34. 34.
    Verhaegh GW, van Bokhoven A, Smit F, et al. Isolation and characterization of the promoter of the human prostate cancer specific DD3 gene. J Biol Chem. 2000;275:37496–503.CrossRefPubMedGoogle Scholar
  35. 35.
    Cui Z, Ren S, Lu J, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol. 2013;31:1117–23.CrossRefPubMedGoogle Scholar
  36. 36.
    Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;32:1–15.Google Scholar
  37. 37.
    Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377–88.CrossRefPubMedGoogle Scholar
  40. 40.
    Braconi C, Kogure T, Valeri N, et al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30:4750–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Augoff K, McCue B, Plow EF, Sossey-Alaoui K. MiR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5–11.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer. 2013;12:131–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sun M, Liu XH, KH L, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4- IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    He X, Tan X, Wang X, et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014;35:12181–8.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Jin-Hua He
    • 1
  • Bao-Xia Li
    • 2
  • Ze-Ping Han
    • 1
  • Mao-Xian Zou
    • 1
  • Li Wang
    • 1
  • Yu-Bing Lv
    • 1
  • Jia-Bin Zhou
    • 1
  • Ming-Rong Cao
    • 3
  • Yu-Guang Li
    • 1
  • Jing-zhi Zhang
    • 4
  1. 1.Department of LaboratoryCentral Hospital of Panyu DistrictGuangzhouChina
  2. 2.State Key Laboratory of Oncology in South ChinaSun Yat-sen University Cancer CenterGuangzhouChina
  3. 3.Department of General Surgery, First Affiliated HospitalJinan UniversityGuangzhouChina
  4. 4.The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations