Skip to main content

Advertisement

Log in

Highly expressed lncRNA CRNDE promotes cell proliferation through Wnt/β-catenin signaling in renal cell carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Recently, numerous studies revealed that long non-coding RNAs (lncRNAs) play complex roles in the field of tumor biology, while the functions of lncRNA in renal cell carcinoma (RCC) remain largely unknown. In the current study, we retrieved Oncomine database and found a lncRNA colorectal neoplasia differentially expressed (CRNDE) which is highly expressed in different cohorts of RCC patients; this clue reminds us that CRNDE might exert its functions in RCC tumorigenesis. We then detected the level of CRNDE in fresh RCC tissues and found that CRNDE is significantly up-regulated compared with adjacent tissues. Furthermore, both loss and gain function assays revealed that CRNDE promotes RCC cell proliferation and growth both in vitro and in vivo.

In addition, we found that CRNDE regulates the cell cycle transition from G0/G1 stage to S stage and modulates the expression of CCND1 and CCNE1. Moreover, we further illustrated that CRNDE activates Wnt/β-catenin signaling in RCC cell lines. Taken together, in the current study, we found that lncRNA CRNDE is highly expressed in RCC malignant tissues and the heightened CRNDE robustly promotes RCC cell proliferation through activating Wnt/β-catenin signaling; our findings enlarge our knowledge in the molecular pathology of RCC tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008;34(3):193–205.

    Article  PubMed  Google Scholar 

  2. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170(6):2163–72.

    Article  CAS  PubMed  Google Scholar 

  3. Renshaw A. Subclassification of renal cell neoplasms: an update for the practising pathologist. Histopathology. 2002;41(4):283–300.

    Article  CAS  PubMed  Google Scholar 

  4. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer discovery. 2011;1(5):391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research& quest. Oncogene. 2012;31(43):4577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of wnt signaling. Cell Stem Cell. 2015;16(4):413–25.

    Article  CAS  PubMed  Google Scholar 

  8. Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes & cancer. 2011;2(8):829–40.

    Article  CAS  Google Scholar 

  9. Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 2015;367(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hajjari M, Khoshnevisan A. Potential long non-coding RNAs to be considered as biomarkers or therapeutic targets in gastric cancer. Front Genet. 2013;4:210.

    PubMed  PubMed Central  Google Scholar 

  11. Wang J, Zhang K, Wang J, Wu X, Liu X, Li B, et al. Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma. Oncotarget. 2015;6(22):18905–20. doi:10.18632/oncotarget.4305.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lenburg ME, Liou LS, Gerry NP, Frampton GM, Cohen HT, Christman MF. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer. 2003;3(1):1.

    Article  Google Scholar 

  13. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9(1):152.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Szafron L, Balcerak A, Grzybowska E, Pienkowskagrela B, Felisiakgolabek A, Podgorska A, et al. The novel gene CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues. PLoS One. 2015;10(5):e0127475.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Musgrove EA. Cyclins: roles in mitogenic signaling and oncogenic transformation: mini review. Growth Factors. 2006;24(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  16. Davidson G, Shen J, Huang Y-L, Su Y, Karaulanov E, Bartscherer K, et al. Cell cycle control of wnt receptor activation. Dev Cell. 2009;17(6):788–99.

    Article  CAS  PubMed  Google Scholar 

  17. Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through β-catenin. Science. 2002;296(5573):1644–6.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang F, Zhang L, Huo X, Yuan Jh, D X, Sx Y, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011;54(5):1679–89.

    Article  CAS  PubMed  Google Scholar 

  20. Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.

    Article  CAS  PubMed  Google Scholar 

  21. Xiang J-F, Yin Q-F, Chen T, Zhang Y, Zhang X-O, Wu Z, et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 2014;24(5):513–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13(8):528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 2009;7(6):e1000121.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moon RT, Kohn AD, De Ferrari GV, Kaykas AWNT. β-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.

    Article  CAS  PubMed  Google Scholar 

  26. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev. 1996;59(1):3–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. He’s for the constructive suggestions in the experiment design and the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Zhou.

Ethics declarations

Conflicts of interest

None.

Additional information

Kun Shao and Tianming Shi contributed equally to this manuscript.

Electronic supplementary material

Figure 1S

(A) The expression of CRNDE is significantly down-regulated in 786-O and A498 cell lines. (B) Overexpression of CRNDE dramatically elevates the expression of CRNDE in HEK-293T cell lines (JPEG 174 kb)

Figure 2S

3X Flag tagged CRNDE validated the non-coding potential of CRNDE. Western blots shown that CRNDE and positive control UCA1 could not be determined by Flag antibody, while negatively control LKB1 could be examined (JPEG 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, K., Shi, T., Yang, Y. et al. Highly expressed lncRNA CRNDE promotes cell proliferation through Wnt/β-catenin signaling in renal cell carcinoma. Tumor Biol. 37, 15997–16004 (2016). https://doi.org/10.1007/s13277-016-5440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5440-0

Keywords

Navigation