Tumor Biology

, Volume 37, Issue 12, pp 16305–16315 | Cite as

Expression pattern of BCCIP in hepatocellular carcinoma is correlated with poor prognosis and enhanced cell proliferation

  • Zhipeng Lin
  • Baoying Hu
  • Wenkai Ni
  • Xiaofei Mao
  • Huiling Zhou
  • Jiale Lv
  • Bihui Yin
  • Zhongyi Shen
  • Miaomiao Wu
  • Wensen Ding
  • Mingbing Xiao
  • Runzhou Ni
Original Article


BCCIP was originally identified as a BRCA2- and CDKN1A- (Cip1/waf1/p21) interacting protein, also known as BCCIP. It has been reported to express in various types of cancers, including colorectal cancer (CRC), astrocytic brain tumors, and glioblastomas. However, the relationship between BCCIP expression and clinicopathological features of hepatocellular carcinoma (HCC) remains to be determined. Herein, we demonstrated that BCCIP was downregulated in clinical HCC tissues; its level was inversely correlated with multiple clinicopathological factors, such as tumor grade, tumor size, and Ki67 expression. Cox regression analysis of tumor samples revealed that BCCIP expression status was an independent prognostic factor for HCC patients’ poor survival. Our study also indicated that BCCIP shutdown reduces p21 expression and accelerates G1 to S progression of LO2 hepatocytes significantly. Moreover, there is an interaction between BCCIP and p53 in hepatic L02 cells, and the downregulation of p21 expression by BCCIP is in a p53-dependent way. These findings revealed that BCCIP may play a significant role for the determination of HCC progression through its role in regulating cell growth. Thus, our results suggest that BCCIP is of potential interest for prognostic marker and therapeutic target of HCC.


BCCIP Hepatocellular carcinoma p53 Prognosis Cell proliferation 


Compliance with ethical standards


This study was funded by the following:

1. Natural Youth Foundation of China (grant number 81502072)

2. Natural Youth Foundation of China (grant number 81401985)

3. National Natural Science Foundation of China (grant number 81472272)

4. The Administration of Science and Technology of Nantong (grant number MS22015062)

Conflict of interest


Supplementary material

13277_2016_5424_Fig7_ESM.gif (56 kb)

(GIF 55 kb)

13277_2016_5424_MOESM1_ESM.tif (286 kb)
High resolution image (TIFF 285 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology. 2014;60(6):2099–108. doi: 10.1002/hep.27406.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ono T, Kitaura H, Ugai H, Murata T, Yokoyama KK, Iguchi-Ariga SM, et al. TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J Biol Chem. 2000;275(40):31145–54. doi: 10.1074/jbc.M003031200.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu J, Yuan Y, Huan J, Shen Z. Inhibition of breast and brain cancer cell growth by BCCIP alpha, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene. 2001;20(3):336–45. doi: 10.1038/sj.onc.1204098.CrossRefPubMedGoogle Scholar
  5. 5.
    Meng X, Liu J, Shen Z. Genomic structure of the human BCCIP gene and its expression in cancer. Gene. 2003;302(1–2):139–46.CrossRefPubMedGoogle Scholar
  6. 6.
    Meng X, Lu H, Shen Z. BCCIP functions through p53 to regulate the expression of p21Waf1/Cip1. Cell Cycle. 2004;3(11):1457–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Meng X, Fan J, Shen Z. Roles of BCCIP in chromosome stability and cytokinesis. Oncogene. 2007;26(43):6253–60. doi: 10.1038/sj.onc.1210460.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lu H, Huang YY, Mehrotra S, Droz-Rosario R, Liu J, Bhaumik M, et al. Essential roles of BCCIP in mouse embryonic development and structural stability of chromosomes. PLoS Genet. 2011;7(9):e1002291. doi: 10.1371/journal.pgen.1002291.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meng X, Liu J, Shen Z. Inhibition of G1 to S cell cycle progression by BCCIP beta. Cell Cycle. 2004;3(3):343–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Fan J, Wray J, Meng X, Shen Z. BCCIP is required for the nuclear localization of the p21 protein. Cell Cycle. 2009;8(18):3019–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mao N, Zhou Q, Kojic M, Perez-Martin J, Holloman WK. Ortholog of BRCA2-interacting protein BCCIP controls morphogenetic responses during DNA replication stress in Ustilago maydis. DNA repair. 2007;6(11):1651–60. doi: 10.1016/j.dnarep.2007.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu J, Lu H, Ohgaki H, Merlo A, Shen Z. Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas. BMC Cancer. 2009;9:268. doi: 10.1186/1471-2407-9-268.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roversi G, Pfundt R, Moroni RF, Magnani I, van Reijmersdal S, Pollo B, et al. Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene. 2006;25(10):1571–83. doi: 10.1038/sj.onc.1209177.CrossRefPubMedGoogle Scholar
  14. 14.
    Rewari A, Lu H, Parikh R, Yang Q, Shen Z, Haffty BG. BCCIP as a prognostic marker for radiotherapy of laryngeal cancer. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2009;90(2):183–8. doi: 10.1016/j.radonc.2008.10.020.CrossRefGoogle Scholar
  15. 15.
    Liu X, Cao L, Ni J, Liu N, Zhao X, Wang Y, et al. Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues. Int J Oncol. 2013;43(6):1925–34. doi: 10.3892/ijo.2013.2124.PubMedGoogle Scholar
  16. 16.
    Meng X, Yue J, Liu Z, Shen Z. Abrogation of the transactivation activity of p53 by BCCIP down-regulation. J Biol Chem. 2007;282(3):1570–6. doi: 10.1074/jbc.M607520200.CrossRefPubMedGoogle Scholar
  17. 17.
    Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, et al. Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett. 2015;235(1):17–27. doi: 10.1016/j.toxlet.2014.12.019.CrossRefPubMedGoogle Scholar
  18. 18.
    Wan C, Hou S, Ni R, Lv L, Ding Z, Huang X, et al. MIF4G domain containing protein regulates cell cycle and hepatic carcinogenesis by antagonizing CDK2-dependent p27 stability. Oncogene. 2015;34(2):237–45. doi: 10.1038/onc.2013.536.CrossRefPubMedGoogle Scholar
  19. 19.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. Reporting recommendations for tumour marker prognostic studies (remark). Br J Cancer. 2005;93(4):387–91. doi: 10.1038/sj.bjc.6602678.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang Y, Wang J, Zhong J, Deng Y, Xi Q, He S, et al. Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol. 2015;32(1):379. doi: 10.1007/s12032-014-0379-8.CrossRefPubMedGoogle Scholar
  21. 21.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Barraud L, Merle P, Soma E, Lefrancois L, Guerret S, Chevallier M, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 2005;42(5):736–43. doi: 10.1016/j.jhep.2004.12.035.CrossRefPubMedGoogle Scholar
  23. 23.
    Chlebowski RT, Brzechwa-Adjukiewicz A, Cowden A, Block JB, Tong M, Chan KK. Doxorubicin (75 mg/m2) for hepatocellular carcinoma: clinical and pharmacokinetic results. Cancer treatment reports. 1984;68(3):487–91.PubMedGoogle Scholar
  24. 24.
    Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27(9):1485–91. doi: 10.1200/JCO.2008.20.7753.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ittmann MM. Chromosome 10 alterations in prostate adenocarcinoma (review. Oncol Rep. 1998;5(6):1329–35.PubMedGoogle Scholar
  26. 26.
    Merlo A. Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev. 2003;26(3):145–58. doi: 10.1007/s10143-003-0267-8.CrossRefPubMedGoogle Scholar
  27. 27.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64(19):6892–9. doi: 10.1158/0008-5472.CAN-04-1337.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu H, Guo X, Meng X, Liu J, Allen C, Wray J, et al. The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair. Mol Cell Biol. 2005;25(5):1949–57. doi: 10.1128/MCB.25.5.1949-1957.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang YY, Dai L, Gaines D, Droz-Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73(23):7122–33. doi: 10.1158/0008-5472.CAN-13-1766.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Zhipeng Lin
    • 1
  • Baoying Hu
    • 2
  • Wenkai Ni
    • 1
  • Xiaofei Mao
    • 3
  • Huiling Zhou
    • 4
  • Jiale Lv
    • 1
  • Bihui Yin
    • 5
  • Zhongyi Shen
    • 1
  • Miaomiao Wu
    • 1
  • Wensen Ding
    • 6
  • Mingbing Xiao
    • 1
  • Runzhou Ni
    • 1
  1. 1.Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Basic Medical Research Centre, Medical CollegeNantong UniversityNantongChina
  3. 3.Department of StomatologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  4. 4.Key Laboratory of NeuroregenerationNantong UniversityNantongChina
  5. 5.Department of Hepatic OncologyNantong Tumor HospitalNantongChina
  6. 6.Department of NeurologyAffiliated Hospital of Nantong UniversityNantongChina

Personalised recommendations