Advertisement

Tumor Biology

, Volume 37, Issue 11, pp 14451–14461 | Cite as

Dysregulation of TTP and HuR plays an important role in cancers

Review

Abstract

Defects in the adenosine-uridine (AU)-rich elements (AREs), which mediate post-transcriptional regulation, play important roles in cancers. Both tristetraprolin (TTP, also known as TIS11 and ZFP36) and human antigen R (HuR, also known as ELAVL1) are two important and closely related AU-rich RNA-binding proteins (ARE-BPs). High-expression or aberrant nuclear/cytoplasmic distribution of HuR and decreased TTP have been found in many types of cancers. TTP mediates the decay of target mRNAs, whereas HuR generally stabilizes target transcripts and promotes translation of certain mRNAs. Furthermore, thousands of overlapping binding sites of TTP and HuR were found in more than 1300 genes. RNA-IP experiments also indicated that TTP can bind directly to and destabilize HuR mRNA. The dysregulation of TTP and HuR has been found to play an important role in the progression of cancers, including inflammation-related cancer, as well as in proliferation, apoptosis, angiogenesis, metastasis, invasion, and chemotherapy resistance. In this review, we provided an overview of the role of TTP and HuR, as well as the underlying mechanisms of the TTP-HuR axis in cancers.

Keywords

Tristetraprolin ZFP36 ELAVL1 HuR Cancer Proliferation Metastasis Angiogenesis 

Notes

Compliance with ethical standards

Conflicts of interest

None

Reference

  1. 1.
    Gerstberger S, Hafner M, Tuschl TA. Census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45. doi: 10.1038/nrg3813.PubMedCrossRefGoogle Scholar
  2. 2.
    Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 2012;46(5):674–90. doi: 10.1016/j.molcel.2012.05.021.PubMedCrossRefGoogle Scholar
  3. 3.
    Newman R, McHugh J, Turner MRNA. Binding proteins as regulators of immune cell biology. Clin Exp Immunol. 2016;183(1):37–49. doi: 10.1111/cei.12684.PubMedCrossRefGoogle Scholar
  4. 4.
    Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406. doi: 10.1016/j.cell.2012.04.031.PubMedCrossRefGoogle Scholar
  5. 5.
    Shen ZJ, Malter JS. Regulation of AU-rich element RNA binding proteins by phosphorylation and the Prolyl Isomerase Pin1. Biomolecules. 2015;5(2):412–34. doi: 10.3390/biom5020412.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Griseri P, Pages G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interf Cytokine Res. 2014;34(4):242–54. doi: 10.1089/jir.2013.0140.CrossRefGoogle Scholar
  7. 7.
    Fallmann J, Sedlyarov V, Tanzer A, Kovarik P, Hofacker IL. AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Res. 2016;44(D1):D90–5. doi: 10.1093/nar/gkv1238.PubMedCrossRefGoogle Scholar
  8. 8.
    Halees AS, El-Badrawi R, Khabar KSARED. Organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res. 2008;36(Database issue):D137–40. doi: 10.1093/nar/gkm959.PubMedGoogle Scholar
  9. 9.
    Baou M, Norton JD, Murphy JJ. AU-rich RNA binding proteins in hematopoiesis and leukemogenesis. Blood. 2011;118(22):5732–40. doi: 10.1182/blood-2011-07-347237.PubMedCrossRefGoogle Scholar
  10. 10.
    Cha HJ, Lee HH, Chae SW, Cho WJ, Kim YM, Choi HJ, et al. Tristetraprolin downregulates the expression of both VEGF and COX-2 in human colon cancer. Hepato-Gastroenterology. 2011;58(107–108):790–5.PubMedGoogle Scholar
  11. 11.
    Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res. 2009;69(12):5168–76. doi: 10.1158/0008-5472.CAN-08-4238.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology. 2009;136(5):1669–79. doi: 10.1053/j.gastro.2009.01.010.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Miyata Y, Watanabe S, Sagara Y, Mitsunari K, Matsuo T, Ohba K, et al. High expression of HuR in cytoplasm, but not nuclei, is associated with malignant aggressiveness and prognosis in bladder cancer. PLoS One. 2013;8(3):e59095. doi: 10.1371/journal.pone.0059095.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Giaginis C, Alexandrou P, Tsoukalas N, Sfiniadakis I, Kavantzas N, Agapitos E, et al. Hu-antigen receptor (HuR) and cyclooxygenase-2 (COX-2) expression in human non-small-cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival. Tumour Biol. 2015;36(1):315–27. doi: 10.1007/s13277-014-2637-y.PubMedCrossRefGoogle Scholar
  15. 15.
    Wei YC, Chou FF, Li CF, Li WM, Chen YY, Lan J, et al. HuR cytoplasmic expression is associated with increased cyclin a expression and inferior disease-free survival in patients with gastrointestinal stromal tumours (GISTs. Histopathology. 2013;63(4):445–54. doi: 10.1111/his.12148.PubMedGoogle Scholar
  16. 16.
    Wei ZR, Liang C, Feng D, Cheng YJ, Wang WM, Yang DJ, et al. Low tristetraprolin expression promotes cell proliferation and predicts poor patients outcome in pancreatic cancer. Oncotarget. 2016. doi: 10.18632/oncotarget.7397.Google Scholar
  17. 17.
    Wang J, Zhao W, Guo Y, Zhang B, Xie Q, Xiang D, et al. The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology. 2009;76(6):420–9. doi: 10.1159/000216837.PubMedCrossRefGoogle Scholar
  18. 18.
    Danilin S, Sourbier C, Thomas L, Lindner V, Rothhut S, Dormoy V, et al. Role of the RNA-binding protein HuR in human renal cell carcinoma. Carcinogenesis. 2010;31(6):1018–26. doi: 10.1093/carcin/bgq052.PubMedCrossRefGoogle Scholar
  19. 19.
    Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomaki K, Blomqvist C, et al. Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res. 2007;13(23):6959–63. doi: 10.1158/1078-0432.CCR-07-1432.PubMedCrossRefGoogle Scholar
  20. 20.
    Shi JX, Su X, Xu J, Zhang WY, Shi Y. HuR post-transcriptionally regulates TNF-alpha-induced IL-6 expression in human pulmonary microvascular endothelial cells mainly via tristetraprolin. Respir Physiol Neurobiol. 2012;181(2):154–61. doi: 10.1016/j.resp.2012.02.011.PubMedCrossRefGoogle Scholar
  21. 21.
    Al-Ahmadi W, Al-Ghamdi M, Al-Souhibani N, Khabar KS. miR-29a inhibition normalizes HuR over-expression and aberrant AU-rich mRNA stability in invasive cancer. J Pathol. 2013;230(1):28–38. doi: 10.1002/path.4178.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yoon NA, Jo HG, Lee UH, Park JH, Yoon JE, Ryu J, et al. Tristetraprolin suppresses the EMT through the down-regulation of Twist1 and Snail1 in cancer cells. Oncotarget. 2016. doi: 10.18632/oncotarget.7094.Google Scholar
  23. 23.
    Mukherjee N, Jacobs NC, Hafner M, Kennington EA, Nusbaum JD, Tuschl T, et al. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol. 2014;15(1):R12. doi: 10.1186/gb-2014-15-1-r12.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hitti E, Bakheet T, Al-Souhibani N, Moghrabi W, Al-Yahya S, Al-Ghamdi M, et al. Systematic analysis of AU-rich element expression in cancer reveals common functional clusters regulated by key RNA-binding proteins. Cancer Res. 2016. doi: 10.1158/0008-5472.CAN-15-3110.PubMedGoogle Scholar
  25. 25.
    Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2011;2(1):42–57. doi: 10.1002/wrna.28.PubMedCrossRefGoogle Scholar
  26. 26.
    Ross CR, Brennan-Laun SE, Wilson GM. Tristetraprolin: roles in cancer and senescence. Ageing Res Rev. 2012;11(4):473–84. doi: 10.1016/j.arr.2012.02.005.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta. 2013;1829(6–7):666–79. doi: 10.1016/j.bbagrm.2013.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brewer BY, Malicka J, Blackshear PJ, Wilson GM. RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of Au-rich MRNA-destabilizing motifs. J Biol Chem. 2004;279(27):27870–7. doi: 10.1074/jbc.M402551200.PubMedCrossRefGoogle Scholar
  29. 29.
    Sandler H, Kreth J, Timmers HT, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 2011;39(10):4373–86. doi: 10.1093/nar/gkr011.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zucal C, D'Agostino V, Loffredo R, Mantelli B, Natthakan T, Lal P, et al. Targeting the multifaceted HuR protein, benefits and caveats. Curr Drug Targets. 2015;16(5):499–515.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem. 1996;271(14):8144–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Simone LE, Keene JD. Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev. 2013;23(1):35–43. doi: 10.1016/j.gde.2012.12.006.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell. 2011;43(3):340–52. doi: 10.1016/j.molcel.2011.06.008.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhu H, Hasman RA, Barron VA, Luo G, Lou H. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol Biol Cell. 2006;17(12):5105–14. doi: 10.1091/mbc.E06-02-0099.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Srikantan S, Tominaga K, Gorospe M. Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci. 2012;13(4):372–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet. 2012;8(9):e1002977. doi: 10.1371/journal.pgen.1002977.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci. 2013;14(5):10015–41. doi: 10.3390/ijms140510015.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Vlasova-St Louis I, Bohjanen PR. Feedback regulation of kinase signaling pathways by AREs and GREs. Cells. 2016;5(1). doi: 10.3390/cells5010004.
  39. 39.
    Srikantan S, Gorospe M. HuR function in disease. Front Biosci (Landmark Ed). 2012;17:189–205.CrossRefGoogle Scholar
  40. 40.
    Doller A, Pfeilschifter J, Eberhardt W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal. 2008;20(12):2165–73. doi: 10.1016/j.cellsig.2008.05.007.PubMedCrossRefGoogle Scholar
  41. 41.
    Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–96. doi: 10.1038/nrclinonc.2015.105.PubMedCrossRefGoogle Scholar
  42. 42.
    Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1–2):15–30. doi: 10.1016/j.mrrev.2008.03.002.PubMedCrossRefGoogle Scholar
  43. 43.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi: 10.1038/nature07205.PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol. 2010;10(1):24–35. doi: 10.1038/nri2685.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 1996;4(5):445–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Papadaki O, Milatos S, Grammenoudi S, Mukherjee N, Keene JD, Kontoyiannis DL. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J Immunol. 2009;182(11):6779–88. doi: 10.4049/jimmunol.0900377.PubMedCrossRefGoogle Scholar
  47. 47.
    Yiakouvaki A, Dimitriou M, Karakasiliotis I, Eftychi C, Theocharis S, Kontoyiannis DL. Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J Clin Invest. 2012;122(1):48–61. doi: 10.1172/JCI45021.PubMedCrossRefGoogle Scholar
  48. 48.
    Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed). 2012;17:174–88.CrossRefGoogle Scholar
  49. 49.
    Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015;35(Suppl):S151–84. doi: 10.1016/j.semcancer.2015.03.006.PubMedCrossRefGoogle Scholar
  50. 50.
    Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15(6):362–74. doi: 10.1038/nri3834.PubMedCrossRefGoogle Scholar
  51. 51.
    Waters JP, Pober JS, Bradley JR. Tumour necrosis factor and cancer. J Pathol. 2013;230(3):241–8. doi: 10.1002/path.4188.PubMedCrossRefGoogle Scholar
  52. 52.
    Xia L, Mo P, Huang W, Zhang L, Wang Y, Zhu H, et al. The TNF-alpha/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis. 2012;33(11):2250–9. doi: 10.1093/carcin/bgs249.PubMedCrossRefGoogle Scholar
  53. 53.
    Oshima H, Ishikawa T, Yoshida GJ, Naoi K, Maeda Y, Naka K, et al. TNF-alpha/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene. 2014;33(29):3820–9. doi: 10.1038/onc.2013.356.PubMedCrossRefGoogle Scholar
  54. 54.
    Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science. 1998;281(5379):1001–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper-Schichl YM. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem. 2014;289(36):25088–100. doi: 10.1074/jbc.M114.563312.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediat Inflamm. 2014;2014:623759. doi: 10.1155/2014/623759.Google Scholar
  57. 57.
    Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 2015. doi: 10.1016/j.cyto.2015.09.011.Google Scholar
  58. 58.
    Lee HH, Yoon NA, Vo MT, Kim CW, Woo JM, Cha HJ, et al. Tristetraprolin down-regulates IL-17 through mRNA destabilization. FEBS Lett. 2012;586(1):41–6. doi: 10.1016/j.febslet.2011.11.021.PubMedCrossRefGoogle Scholar
  59. 59.
    Dan C, Jinjun B, Zi-Chun H, Lin M, Wei C, Xu Z, et al. Modulation of TNF-alpha mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med. 2015;7(2):140–57. doi: 10.15252/emmm.201404797.CrossRefGoogle Scholar
  60. 60.
    Chae MJ, Sung HY, Kim EH, Lee M, Kwak H, Chae CH, et al. Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-alpha mRNA. Exp Mol Med. 2009;41(11):824–31. doi: 10.3858/emm.2009.41.11.088.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chen J, Cascio J, Magee JD, Techasintana P, Gubin MM, Dahm GM, et al. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J Immunol. 2013;191(11):5441–50. doi: 10.4049/jimmunol.1301188.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Serini S, Fasano E, Piccioni E, Monego G, Cittadini AR, Celleno L, et al. DHA induces apoptosis and differentiation in human melanoma cells in vitro: involvement of HuR-mediated COX-2 mRNA stabilization and beta-catenin nuclear translocation. Carcinogenesis. 2012;33(1):164–73. doi: 10.1093/carcin/bgr240.PubMedCrossRefGoogle Scholar
  63. 63.
    Choi HJ, Yang H, Park SH, Moon Y. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol. Toxicol Appl Pharmacol. 2009;240(1):46–54. doi: 10.1016/j.taap.2009.06.023.PubMedCrossRefGoogle Scholar
  64. 64.
    Palanisamy V, Park NJ, Wang J, Wong DT. AUF1 and HuR proteins stabilize interleukin-8 mRNA in human saliva. J Dent Res. 2008;87(8):772–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 2005;33(15):4813–27. doi: 10.1093/nar/gki797.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Di Marco S, Mazroui R, Dallaire P, Chittur S, Tenenbaum SA, Radzioch D, et al. NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol Cell Biol. 2005;25(15):6533–45. doi: 10.1128/MCB.25.15.6533-6545.2005.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kusaka G, Uno K, Iijima K, Shimosegawa T. Role of nitric oxide in the pathogenesis of Barrett's-associated carcinogenesis. World J Gastrointest Pathophysiol. 2016;7(1):131–7. doi: 10.4291/wjgp.v7.i1.131.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fechir M, Linker K, Pautz A, Hubrich T, Forstermann U, Rodriguez-Pascual F, et al. Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene. Mol Pharmacol. 2005;67(6):2148–61. doi: 10.1124/mol.104.008763.PubMedCrossRefGoogle Scholar
  69. 69.
    Lisi L, Navarra P, Feinstein DL, Dello Russo C. The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. J Neuroinflammation. 2011;8(1). doi: 10.1186/1742-2094-8-1.
  70. 70.
    Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res. 2009;104(2):e9–18. doi: 10.1161/CIRCRESAHA.108.188243.PubMedCrossRefGoogle Scholar
  71. 71.
    Gaba A, Grivennikov SI, Do MV, Stumpo DJ, Blackshear PJ, Karin M. Cutting edge: IL-10-mediated tristetraprolin induction is part of a feedback loop that controls macrophage STAT3 activation and cytokine production. J Immunol. 2012;189(5):2089–93. doi: 10.4049/jimmunol.1201126.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    England RN, Preston KJ, Scalia R, Autieri MV. Interleukin-19 decreases leukocyte-endothelial cell interactions by reduction in endothelial cell adhesion molecule mRNA stability. Am J Physiol Cell Physiol. 2013;305(3):C255–65. doi: 10.1152/ajpcell.00069.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cuneo AA, Herrick D, Autieri MV. Il-19 reduces VSMC activation by regulation of mRNA regulatory factor HuR and reduction of mRNA stability. J Mol Cell Cardiol. 2010;49(4):647–54. doi: 10.1016/j.yjmcc.2010.04.016.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35(Suppl):S25–54. doi: 10.1016/j.semcancer.2015.02.006.PubMedCrossRefGoogle Scholar
  75. 75.
    Giammanco A, Blanc V, Montenegro G, Klos C, Xie Y, Kennedy S, et al. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development. Cancer Res. 2014;74(18):5322–35. doi: 10.1158/0008-5472.CAN-14-0726.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Guo X, Connick MC, Vanderhoof J, Ishak MA, Hartley RS. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int J Mol Sci. 2015;16(4):7112–32. doi: 10.3390/ijms16047112.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Che Y, Yi L, Akhtar J, Bing C, Ruiyu Z, Qiang W, et al. AngiotensinII induces HuR shuttling by post-transcriptional regulated CyclinD1 in human mesangial cells. Mol Biol Rep. 2014;41(2):1141–50. doi: 10.1007/s11033-013-2960-1.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 2000;19(10):2340–50. doi: 10.1093/emboj/19.10.2340.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 2010;1(2):214–29. doi: 10.1002/wrna.4.PubMedCrossRefGoogle Scholar
  80. 80.
    Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells. Int Rev Cell Mol Biol. 2015;314:1–41. doi: 10.1016/bs.ircmb.2014.10.001.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh M, Martinez AR, Govindaraju S, Lee BS. HuR inhibits apoptosis by amplifying Akt signaling through a positive feedback loop. J Cell Physiol. 2013;228(1):182–9. doi: 10.1002/jcp.24120.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang X, Zou T, Rao JN, Liu L, Xiao L, Wang PY, et al. Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Res. 2014;42(6):4143. doi: 10.1093/nar/gku196.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lucchesi C, Sheikh MS, Huang Y. Negative regulation of RNA-binding protein HuR by tumor-suppressor ECRG2. Oncogene. 2015. doi: 10.1038/onc.2015.339.PubMedGoogle Scholar
  84. 84.
    Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197. doi: 10.3389/fonc.2014.00197.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Abdelmohsen K, Lal A, Kim HH, Gorospe M. Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle. 2007;6(11):1288–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Lal A, Kawai T, Yang X, Mazan-Mamczarz K, Gorospe M. Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. EMBO J. 2005;24(10):1852–62. doi: 10.1038/sj.emboj.7600661.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Abdelmohsen K, Pullmann Jr R, Lal A, Kim HH, Galban S, Yang X, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007;25(4):543–57. doi: 10.1016/j.molcel.2007.01.011.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sun XJ, Liu BY, Yan S, Jiang TH, Cheng HQ, Jiang HS, et al. MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin. Cell Physiol Biochem. 2015;37(2):707–18. doi: 10.1159/000430389.PubMedCrossRefGoogle Scholar
  89. 89.
    Bourcier C, Griseri P, Grepin R, Bertolotto C, Mazure N, Pages G. Constitutive ERK activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/CXCL8 mRNA stability in melanoma cells. Am J Physiol Cell Physiol. 2011;301(3):C609–18. doi: 10.1152/ajpcell.00506.2010.PubMedCrossRefGoogle Scholar
  90. 90.
    Ryu J, Yoon NA, Seong H, Jeong JY, Kang S, Park N, et al. Resveratrol induces glioma cell apoptosis through activation of tristetraprolin. Mol Cells. 2015;38(11):991–7. doi: 10.14348/molcells.2015.0197.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lee HH, Vo MT, Kim HJ, Lee UH, Kim CW, Kim HK, et al. Stability of the LATS2 tumor suppressor gene is regulated by tristetraprolin. J Biol Chem. 2010;285(23):17329–37. doi: 10.1074/jbc.M109.094235.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xu L, Ning H, Gu L, Wang Q, Lu W, Peng H, et al. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-kappaB pathway. Oncotarget. 2015;6(39):41679–91. doi: 10.18632/oncotarget.6149.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Deng K, Wang H, Shan T, Chen Y, Zhou H, Zhao Q, et al. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33. Sci Rep. 2016;6:24505. doi: 10.1038/srep24505.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Park SB, Lee JH, Jeong WW, Kim YH, Cha HJ, Joe Y, et al. TTP mediates cisplatin-induced apoptosis of head and neck cancer cells by down-regulating the expression of Bcl-2. J Chemother. 2015;27(3):174–80. doi: 10.1179/1973947814Y.0000000234.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu WH, Chou WM, Chang LS. p38 MAPK/PP2Acalpha/TTP pathway on the connection of TNF-alpha and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis. 2013;34(4):818–27. doi: 10.1093/carcin/bgs409.PubMedCrossRefGoogle Scholar
  96. 96.
    Shi J, Wei PK. Interleukin-8: a potent promoter of angiogenesis in gastric cancer. Oncol Lett. 2016;11(2):1043–50. doi: 10.3892/ol.2015.4035.PubMedGoogle Scholar
  97. 97.
    Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016. doi: 10.1016/S0140-6736(15)01088-0.Google Scholar
  98. 98.
    Lee HH, Son YJ, Lee WH, Park YW, Chae SW, Cho WJ, et al. Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer. 2010;126(8):1817–27. doi: 10.1002/ijc.24847.PubMedGoogle Scholar
  99. 99.
    Cho YW, Han YS, Chung IY, Kim SJ, Seo SW, Yoo JM, et al. Suppression of laser-induced choroidal neovascularization by intravitreal injection of tristetraprolin. Int J Ophthalmol. 2014;7(6):952–8. doi: 10.3980/j.issn.2222-3959.2014.06.07.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Xiao J, Gao H, Jin Y, Zhao Z, Guo J, Liu Z, et al. The abnormal expressions of tristetraprolin and the VEGF family in uraemic rats with peritoneal dialysis. Mol Cell Biochem. 2014;392(1–2):229–38. doi: 10.1007/s11010-014-2033-3.PubMedCrossRefGoogle Scholar
  101. 101.
    Essafi-Benkhadir K, Pouyssegur J, Pages G. Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability. Methods Mol Biol. 2010;661:451–69. doi: 10.1007/978-1-60761-795-2_28.PubMedCrossRefGoogle Scholar
  102. 102.
    Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89. doi: 10.1016/j.apsb.2015.05.007.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1alpha: its role in colorectal carcinogenesis and metastasis. Cancer Lett. 2015;366(1):11–8. doi: 10.1016/j.canlet.2015.06.005.PubMedCrossRefGoogle Scholar
  104. 104.
    Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ, et al. Hypoxia-inducible factor-1alpha mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell. 2011;22(18):3366–78. doi: 10.1091/mbc.E10-07-0617.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kim TW, Yim S, Choi BJ, Jang Y, Lee JJ, Sohn BH, et al. Tristetraprolin regulates the stability of HIF-1alpha mRNA during prolonged hypoxia. Biochem Biophys Res Commun. 2010;391(1):963–8. doi: 10.1016/j.bbrc.2009.11.174.PubMedCrossRefGoogle Scholar
  106. 106.
    Fahling M, Persson AB, Klinger B, Benko E, Steege A, Kasim M, et al. Multilevel regulation of HIF-1 signaling by TTP. Mol Biol Cell. 2012;23(20):4129–41. doi: 10.1091/mbc.E11-11-0949.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15:106. doi: 10.1186/s12935-015-0260-7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kang S, Min A, Im SA, Song SH, Kim SG, Kim HA, et al. TGF-beta suppresses COX-2 expression by tristetraprolin-mediated RNA destabilization in A549 human lung cancer cells. Cancer Res Treat. 2015;47(1):101–9. doi: 10.4143/crt.2013.192.PubMedCrossRefGoogle Scholar
  109. 109.
    Dong R, Yang GD, Luo NA, YQ Q. HuR: a promising therapeutic target for angiogenesis. Gland Surg. 2014;3(3):203–6. doi: 10.3978/j.issn.2227-684X.2014.03.02.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Osera C, Martindale JL, Amadio M, Kim J, Yang X, Moad CA, et al. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biol. 2015;12(10):1121–30. doi: 10.1080/15476286.2015.1085276.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol. 2003;23(20):7177–88.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ryu J, Yoon NA, Lee YK, Jeong JY, Kang S, Seong H, et al. Tristetraprolin inhibits the growth of human glioma cells through downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor mRNAs. Mol Cells. 2015;38(2):156–62. doi: 10.14348/molcells.2015.2259.PubMedGoogle Scholar
  113. 113.
    Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev. 2014;34(5):918–56. doi: 10.1002/med.21308.PubMedCrossRefGoogle Scholar
  114. 114.
    Chang SH, Hla T. Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis. Curr Opin Hematol. 2014;21(3):235–40. doi: 10.1097/MOH.0000000000000040.PubMedCrossRefGoogle Scholar
  115. 115.
    Cheng YC, Liou JP, Kuo CC, Lai WY, Shih KH, Chang CY, et al. MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1alpha mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR. Mol Cancer Ther. 2013;12(7):1202–12. doi: 10.1158/1535-7163.MCT-12-0778.PubMedCrossRefGoogle Scholar
  116. 116.
    Gabai VL, Meng L, Kim G, Mills TA, Benjamin IJ, Sherman MY. Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol. 2012;32(5):929–40. doi: 10.1128/MCB.05921-11.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kurosu T, Ohga N, Hida Y, Maishi N, Akiyama K, Kakuguchi W, et al. HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer. 2011;104(5):819–29. doi: 10.1038/bjc.2011.20.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Xu J, Su X, Shi JX, Sun H, Wu T, Shi Y. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor-induced interleukin-6 expression via human antigen R. Chin Med J. 2013;126(22):4322–6.PubMedGoogle Scholar
  119. 119.
    Gurgis FM, Yeung YT, Tang MX, Heng B, Buckland M, Ammit AJ, et al. The p38-MK2-HuR pathway potentiates EGFRvIII-IL-1beta-driven IL-6 secretion in glioblastoma cells. Oncogene. 2015;34(22):2934–42. doi: 10.1038/onc.2014.225.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang D, Wang M, Hu C, Shuang T, Zhou Y, Yan X. Expression of the ELAV-like protein HuR in the cytoplasm is associated with endometrial carcinoma progression. Tumour Biol. 2014;35(12):11939–47. doi: 10.1007/s13277-014-2485-9.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhang C, Xue G, Bi J, Geng M, Chu H, Guan Y, et al. Cytoplasmic expression of the ELAV-like protein HuR as a potential prognostic marker in esophageal squamous cell carcinoma. Tumour Biol. 2014;35(1):73–80. doi: 10.1007/s13277-013-1008-4.PubMedCrossRefGoogle Scholar
  122. 122.
    Liang PI, Li WM, Wang YH, TF W, WR W, Liao AC, et al. HuR cytoplasmic expression is associated with increased cyclin a expression and poor outcome with upper urinary tract urothelial carcinoma. BMC Cancer. 2012;12:611. doi: 10.1186/1471-2407-12-611.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lauriola L, Granone P, Ramella S, Lanza P, Ranelletti FO. Expression of the RNA-binding protein HuR and its clinical significance in human stage I and II lung adenocarcinoma. Histol Histopathol. 2012;27(5):617–26.PubMedGoogle Scholar
  124. 124.
    Zhu Z, Wang B, Bi J, Zhang C, Guo Y, Chu H, et al. Cytoplasmic HuR expression correlates with P-gp, HER-2 positivity, and poor outcome in breast cancer. Tumour Biol. 2013;34(4):2299–308. doi: 10.1007/s13277-013-0774-3.PubMedCrossRefGoogle Scholar
  125. 125.
    Lee JY, Chung TW, Choi HJ, Lee CH, Eun JS, Han YT, et al. A novel cantharidin analog N-benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR. Biochem Biophys Res Commun. 2014;447(2):371–7. doi: 10.1016/j.bbrc.2014.04.035.PubMedCrossRefGoogle Scholar
  126. 126.
    Huwiler A, Akool el S, Aschrafi A, Hamada FM, Pfeilschifter J, Eberhardt W. ATP potentiates interleukin-1 beta-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J Biol Chem. 2003;278(51):51758–69. doi: 10.1074/jbc.M305722200.PubMedCrossRefGoogle Scholar
  127. 127.
    Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, et al. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep. 2016;6:21903. doi: 10.1038/srep21903.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wang H, Zhao Q, Deng K, Guo X, Xia J. Lin28: an emerging important oncogene connecting several aspects of cancer. Tumour Biol. 2016. doi: 10.1007/s13277-015-4759-2.Google Scholar
  129. 129.
    Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med. 2016;5(2). doi: 10.3390/jcm5020017.
  130. 130.
    Yu C, Xin W, Zhen J, Liu Y, Javed A, Wang R, et al. Human antigen R mediated post-transcriptional regulation of epithelial-mesenchymal transition related genes in diabetic nephropathy. J Diabetes. 2015;7(4):562–72. doi: 10.1111/1753-0407.12220.PubMedCrossRefGoogle Scholar
  131. 131.
    Prislei S, Martinelli E, Zannoni GF, Petrillo M, Filippetti F, Mariani M, et al. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Oncotarget. 2015;6(22):18966–79. doi: 10.18632/oncotarget.3943.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Dong R, JG L, Wang Q, He XL, Chu YK, Ma QJ. Stabilization of snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun. 2007;356(1):318–21. doi: 10.1016/j.bbrc.2007.02.145.PubMedCrossRefGoogle Scholar
  133. 133.
    Fang Y, Wei J, Cao J, Zhao H, Liao B, Qiu S, et al. Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One. 2013;8(5):e62558. doi: 10.1371/journal.pone.0062558.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Van Tubergen EA, Banerjee R, Liu M, Vander Broek R, Light E, Kuo S, et al. Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6. Clin Cancer Res. 2013;19(5):1169–79. doi: 10.1158/1078-0432.CCR-12-2927.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Jakstaite A, Maziukiene A, Silkuniene G, Kmieliute K, Gulbinas A, Dambrauskas Z. HuR mediated post-transcriptional regulation as a new potential adjuvant therapeutic target in chemotherapy for pancreatic cancer. World J Gastroenterol. 2015;21(46):13004–19. doi: 10.3748/wjg.v21.i46.13004.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    de Sousa GF, Lima Mde A, Custodio DF, Freitas VM, Monteiro G. Chemogenomic study of carboplatin in Saccharomyces cerevisiae: inhibition of the NEDDylation process overcomes cellular resistance mediated by HuR and Cullin proteins. PLoS One. 2015;10(12):e0145377. doi: 10.1371/journal.pone.0145377.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Filippova N, Yang X, Wang Y, Gillespie GY, Langford C, King PH, et al. The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol Cancer Res. 2011;9(5):648–59. doi: 10.1158/1541-7786.MCR-10-0325.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhou Y, Chang R, Ji W, Wang N, Qi M, Xu Y, et al. Loss of scribble promotes snail translation through translocation of HuR and enhances cancer drug resistance. J Biol Chem. 2016;291(1):291–302. doi: 10.1074/jbc.M115.693853.PubMedCrossRefGoogle Scholar
  139. 139.
    Lal S, Burkhart RA, Beeharry N, Bhattacharjee V, Londin ER, Cozzitorto JA, et al. HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells. Cancer Res. 2014;74(4):1128–40. doi: 10.1158/0008-5472.CAN-13-1915.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Richards NG, Rittenhouse DW, Freydin B, Cozzitorto JA, Grenda D, Rui H, et al. HuR status is a powerful marker for prognosis and response to gemcitabine-based chemotherapy for resected pancreatic ductal adenocarcinoma patients. Ann Surg. 2010;252(3):499–505 discussion -6. doi: 10.1097/SLA.0b013e3181f1fd44.PubMedGoogle Scholar
  141. 141.
    Li Y, Yu J, Du D, Fu S, Chen Y, Yu F, et al. Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells. Oncol Lett. 2013;6(1):156–60. doi: 10.3892/ol.2013.1352.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Latorre E, Tebaldi T, Viero G, Sparta AM, Quattrone A, Provenzani A. Downregulation of HuR as a new mechanism of doxorubicin resistance in breast cancer cells. Mol Cancer. 2012:11–3. doi: 10.1186/1476-4598-11-13.
  143. 143.
    Latorre E, Castiglioni I, Gatto P, Carelli S, Quattrone A, Provenzani A. Loss of protein kinase Cdelta/HuR interaction is necessary to doxorubicin resistance in breast cancer cell lines. J Pharmacol Exp Ther. 2014;349(1):99–106. doi: 10.1124/jpet.113.211839.PubMedCrossRefGoogle Scholar
  144. 144.
    Brody JR, Gonye GE. HuR's role in gemcitabine efficacy: an exception or opportunity? Wiley Interdiscip Rev RNA. 2011;2(3):435–44. doi: 10.1002/wrna.62.PubMedCrossRefGoogle Scholar
  145. 145.
    Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y, et al. Translational control of TOP2A influences doxorubicin efficacy. Mol Cell Biol. 2011;31(18):3790–801. doi: 10.1128/MCB.05639-11.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Marechal R, Van Laethem JL. HuR modulates gemcitabine efficacy: new perspectives in pancreatic cancer treatment. Expert Rev Anticancer Ther. 2009;9(10):1439–41. doi: 10.1586/era.09.119.PubMedCrossRefGoogle Scholar
  147. 147.
    Wang J, Li D, Wang B, Y. W. Predictive and prognostic significance of cytoplasmic expression of ELAV-like protein HuR in invasive breast cancer treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2013;141(2):213–24. doi: 10.1007/s10549-013-2679-7.PubMedCrossRefGoogle Scholar
  148. 148.
    Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, Dasgupta A, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res. 2009;69(11):4567–72. doi: 10.1158/0008-5472.CAN-09-0371.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Panvichian R, Tantiwetrueangdet A, Angkathunyakul N, Leelaudomlipi S. TOP2A amplification and overexpression in hepatocellular carcinoma tissues. Biomed Res Int. 2015;2015:381602. doi: 10.1155/2015/381602.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Nitiss JL, Targeting DNA. Topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9(5):338–50. doi: 10.1038/nrc2607.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    McAllister F, Pineda DM, Jimbo M, Lal S, Burkhart RA, Moughan J, et al. dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer: a dual-institutional follow-up with the RTOG 9704 trial. Cancer Biol Ther. 2014;15(6):688–98. doi: 10.4161/cbt.28413.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of General Surgery and Translational Medicine CenterNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina
  2. 2.Department of ophthalmology and Translational Medicine CenterNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina
  3. 3.Department of gynecology and Translational Medicine CenterNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina

Personalised recommendations