Advertisement

Tumor Biology

, Volume 37, Issue 12, pp 15399–15410 | Cite as

Diverse roles of miR-335 in development and progression of cancers

  • Long-ji Luo
  • Dan-dan Wang
  • Jing Wang
  • Fan Yang
  • Jin-hai Tang
Review

Abstract

MicroRNAs (miRNAs), a series of small noncoding RNAs that regulate gene expression at the post-transcriptional/translational level, are pivotal in cell differentiation, biological development, occurrence, and development of diseases, especially in cancers. Early studies have shown that miRNA-335 (miR-335) is widely dysregulated in human cancers and play critical roles in tumorigenesis and tumor progression. In this review, we aim to summarize the regulation of miR-335 expression mechanisms in cancers. We focus on the target genes regulated by miR-335 and its downstream signaling pathways involved in the biological effects of tumor growth, invasion, and metastasis both in vitro and in vivo, and analyze the relationships between miR-335 expression and the clinical characteristics of tumors as well as its effects on prognosis. The collected evidences support the potential use of miR-335 in prognosis and diagnosis as well as the therapeutic prospects of miR-335 in cancers.

Keywords

MicroRNA MiR-335 Cancers Biomarker 

Notes

Acknowledgments

This project is funded by National High Technology Research and Development Program of China (No. 2014AA020604), the National Natural Science Foundation of China (No. 81272470), the National key clinical specialist construction Programs of China (No. 2013[544]), Major Program of Natural Science Foundation of Jiangsu Province (No. BL2014090), and Natural Science Foundation of Jiangsu Province (No. BK20151579).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.PubMedGoogle Scholar
  4. 4.
    Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.PubMedCrossRefGoogle Scholar
  8. 8.
    Gunaratne PH, Creighton CJ, Watson M, Tennakoon JB. Large-scale integration of MicroRNA and gene expression data for identification of enriched microRNA-mRNA associations in biological systems. Methods Mol Biol. 2010;667:297–315.PubMedCrossRefGoogle Scholar
  9. 9.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in drosophila. Cell. 2003;113(1):25–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Xu P, Vernooy SY, Guo M, Hay BA. The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13(9):790–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Kawasaki H, Taira K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature. 2003;423(6942):838–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. MicroRNAs in cancer management. Kong YW, Ferland-McCollough D, Jackson TJ, et al. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.PubMedCrossRefGoogle Scholar
  15. 15.
    Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Ventura a, jacks T, MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136(4):586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shi L, Jiang D, Sun G, Wan Y, Zhang S, Zeng Y, et al. miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neuro-Oncol. 2012;110(2):155–62. doi: 10.1007/s11060-012-0951-z.CrossRefGoogle Scholar
  17. 17.
    Fu Q, Liu X, Liu Y, Yang J, Lv G, Dong S. MicroRNA-335 and −543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med. 2015;36(5):1417–25. doi: 10.3892/ijmm.2015.2355.PubMedGoogle Scholar
  18. 18.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52. doi: 10.1038/nature06487.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sun Z, Zhang Z, Liu Z, Qiu B, Liu K, Dong G. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 2014;31(6):982. doi: 10.1007/s12032-014-0982-8.PubMedCrossRefGoogle Scholar
  20. 20.
    Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol. 2013;42(2):411–8. doi: 10.3892/ijo.2012.1724.PubMedGoogle Scholar
  21. 21.
    Heyn H, Engelmann M, Schreek S, Ahrens P, Lehmann U, Kreipe H, et al. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer. 2011;129(12):2797–806. doi: 10.1002/ijc.25962.PubMedCrossRefGoogle Scholar
  22. 22.
    Gao Y, Zeng F, JY W, Li HY, Fan JJ, Mai L, et al. MiR-335 inhibits migration of breast cancer cells through targeting oncoprotein c-met. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(4):2875–83. doi: 10.1007/s13277-014-2917-6.CrossRefGoogle Scholar
  23. 23.
    Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, et al. An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genet. 2008;1:37. doi: 10.1186/1755-8794-1-37.Google Scholar
  24. 24.
    Kozaki K, Inazawa J. Tumor-suppressive microRNA silenced by tumor-specific DNA hypermethylation in cancer cells. Cancer Sci. 2012;103(5):837–45. doi: 10.1111/j.1349-7006.2012.02236.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev. 2011;25(3):226–31. doi: 10.1101/gad.1974211.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Li Z, Li D, Zhang G, Xiong J, Jie Z, Cheng H, et al. Methylation-associated silencing of MicroRNA-335 contributes tumor cell invasion and migration by interacting with RASA1 in gastric cancer. Am J Cancer Res. 2014;4(6):648–62.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang S, Kim K, Jin UH, Pfent C, Cao H, Amendt B, et al. Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Mol Cancer Ther. 2012;11(1):108–18. doi: 10.1158/1535-7163.MCT-11-0548.PubMedCrossRefGoogle Scholar
  28. 28.
    Heidary MF, Mahmoodzadeh Hosseini H, Mehdizadeh Aghdam E, Nourani MR, Ranjbar R, Mirnejad R, et al. Overexpression of metastatic related MicroRNAs, Mir-335 and Mir-10b, by staphylococcal enterotoxin B in the metastatic breast cancer cell line. Advanced pharmaceutical bulletin. 2015;5(2):255–9. doi: 10.15171/apb.2015.035.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis. 2012;33(5):976–85. doi: 10.1093/carcin/bgs114.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L, et al. miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery. 2013;154(2):226–33. doi: 10.1016/j.surg.2013.04.005.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Qiao J, Lee S, Paul P, Qiao L, Taylor CJ, Schlegel C, et al. Akt2 regulates metastatic potential in neuroblastoma. PLoS One. 2013;8(2).Google Scholar
  32. 32.
    Sankar N, Baluchamy S, Kadeppagari RK, Singhal G, Weitzman S, Thimmapaya B. p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-myc. Oncogene. 2008;27(43):5717–28.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim Y, Kim H, Park H, Park D, Lee H, Lee YS, et al. miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J Biol Chem. 2014;289(40):28019–39. doi: 10.1074/jbc.M114.578229.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Du L, Sun W, Zhang H, Chen D. BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells. Journal of applied toxicology: JAT. 2015. doi: 10.1002/jat.3195.Google Scholar
  35. 35.
    Shu M, Zhou Y, Zhu W, Zhang H, Wu S, Chen J, et al. MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase a pathway. Mol Pharmacol. 2012;81(3):292–8. doi: 10.1124/mol.111.076166.PubMedCrossRefGoogle Scholar
  36. 36.
    Scarola M, Schoeftner S, Schneider C, Benetti R. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 2010;70(17):6925–33. doi: 10.1158/0008-5472.CAN-10-0141.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin NT, Nakamura K, Davies R, Nahas SA, Brown C, Tunuguntla R, et al. ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response. PLoS Genet. 2013;9(5):e1003505. doi: 10.1371/journal.pgen.1003505.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005;280(12):11626–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X, et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(7):1575–85. doi: 10.1002/jbmr.2163.CrossRefGoogle Scholar
  40. 40.
    Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011;18(6):985–95. doi: 10.1038/cdd.2010.167.PubMedCrossRefGoogle Scholar
  41. 41.
    Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, et al. p14ARF links the tumour suppressors RB and p53. Nature. 1998;395(6698):124–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006;444(7115):61–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang J, Pickering CR, Holst CR, Gauthier ML, Tlsty TD. p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res. 2006;66(21):10325–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li X, Miyajima M, Jiang C, Arai H. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci Lett. 2007;413(2):141–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu Y, Zhao F, Wang Z, Song Y, Luo Y, Zhang X, et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene. 2012;31(11):1398–407. doi: 10.1038/onc.2011.340.PubMedCrossRefGoogle Scholar
  47. 47.
    Hiraga T, Myoui A, Hashimoto N, Sasaki A, Hata K, Morita Y, et al. Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Res. 2012;72(16):4238–49.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lynch J, Meehan MH, Crean J, Copeland J, Stallings RL, Bray IM. Metastasis suppressor microRNA-335 targets the formin family of actin nucleators. PLoS One. 2013;8(11):e78428. doi: 10.1371/journal.pone.0078428.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 2011;10(59):1476–4598.Google Scholar
  50. 50.
    Li H, Xie S, Liu M, Chen Z, Liu X, Wang L, et al. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol. 2014;45(1):197–208. doi: 10.3892/ijo.2014.2415.PubMedGoogle Scholar
  51. 51.
    Erturk E, Cecener G, Egeli U, Tunca B, Tezcan G, Gokgoz S, et al. Expression status of let-7a and miR-335 among breast tumors in patients with and without germ-line BRCA mutations. Mol Cell Biochem. 2014;395(1–2):77–88. doi: 10.1007/s11010-014-2113-4.PubMedCrossRefGoogle Scholar
  52. 52.
    Yan Z, Xiong Y, Xu W, Gao J, Cheng Y, Wang Z, et al. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One. 2012;7(7).Google Scholar
  53. 53.
    Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev. 2009;23(18):2152–65.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yang W, Lee DY, Ben-David Y. The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol. 2011;3(2):140–55.PubMedGoogle Scholar
  55. 55.
    Polytarchou C, Iliopoulos D, Struhl K. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci U S A. 2012;109(36):14470–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cheng Q, Cao H, Chen Z, Ma Z, Wan X, Peng R, et al. PAX6, a novel target of miR-335, inhibits cell proliferation and invasion in glioma cells. Mol Med Rep. 2014;10(1):399–404. doi: 10.3892/mmr.2014.2150.PubMedGoogle Scholar
  57. 57.
    Zu Y, Ban J, Xia Z, Wang J, Cai Y, Ping W, et al. Genetic variation in a miR-335 binding site in BIRC5 alters susceptibility to lung cancer in Chinese Han populations. Biochem Biophys Res Commun. 2013;430(2):529–34. doi: 10.1016/j.bbrc.2012.12.001.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang B, Huang J, Liu H, Guo W, Li G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015. doi: 10.1007/s13277-015-3951-8.Google Scholar
  59. 59.
    Liu H, Li W, Chen C, Pei Y, Long X. MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(8):6313–9. doi: 10.1007/s13277-015-3317-2.CrossRefGoogle Scholar
  60. 60.
    Wang H, Li M, Zhang R, Wang Y, Zang W, Ma Y, et al. Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2013;34(5):3101–9. doi: 10.1007/s13277-013-0878-9.CrossRefGoogle Scholar
  61. 61.
    Wang K, Chen X, Zhan Y, Jiang W, Liu X, Wang X, et al. miR-335 inhibits the proliferation and invasion of clear cell renal cell carcinoma cells through direct suppression of BCL-W. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(9):6875–82. doi: 10.1007/s13277-015-3382-6.CrossRefGoogle Scholar
  62. 62.
    Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y, et al. miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Molecular cancer research: MCR. 2014;12(1):101–10. doi: 10.1158/1541-7786.MCR-13-0136.PubMedCrossRefGoogle Scholar
  63. 63.
    Xiong SW, Lin TX, KW X, Dong W, Ling XH, Jiang FN, et al. MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res. 2013;19(3):529–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Gao L, Yang Y, Xu H, Liu R, Li D, Hong H, et al. MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(8):8309–18. doi: 10.1007/s13277-014-2092-9.CrossRefGoogle Scholar
  65. 65.
    Alfano D, Gorrasi A, Li Santi A, Ricci P, Montuori N, Selleri C, et al. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med. 2015;19(9):2262–72. doi: 10.1111/jcmm.12617.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Catrina Ene AM, Borze I, Guled M, Costache M, Leen G, Sajin M, et al. MicroRNA expression profiles in Kaposi’s sarcoma. Pathol Oncol Res. 2014;20(1):153–9. doi: 10.1007/s12253-013-9678-1.PubMedCrossRefGoogle Scholar
  67. 67.
    Li G, MicroRNA PY. Signatures in total peripheral blood of gallbladder cancer patients. Tumour biology: the journal of the international society for. Oncodevelopmental Biology and Medicine. 2015;36(9):6985–90. doi: 10.1007/s13277-015-3412-4.CrossRefGoogle Scholar
  68. 68.
    Berx G, Raspé E, Christofori G, Thiery JP, Sleeman JP. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Berx G, Raspé E, Christofori G, et al. pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis. 2007;24(8):587–97.PubMedCrossRefGoogle Scholar
  69. 69.
    Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nguyen DX, Bos PD, Massagué J, metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Spaderna S, Schmalhofer O, Hlubek F, Jung A, Kirchner T, Brabletz T. Epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression. Spaderna S, Schmalhofer O, Hlubek F, et al. epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression. Verh Dtsch Ges Pathol. 2007:9121–8.Google Scholar
  71. 71.
    Varki A, Varki NM, Borsig L. Molecular basis of metastasis. Varki a, Varki NM, Borsig L, molecular basis of metastasis. N Engl J Med. 2009;360(16):1678–9 .author reply 1679-80PubMedCrossRefGoogle Scholar
  72. 72.
    Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, Choi KM, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66(10):4991–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang Y, Zhao W, Fu Q. miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol Cell Biochem. 2013;384(1–2):105–11. doi: 10.1007/s11010-013-1786-4.PubMedCrossRefGoogle Scholar
  74. 74.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Thiery JP, Acloque H, Huang RY, et al. epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.PubMedCrossRefGoogle Scholar
  77. 77.
    Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 2005;33(20):6566–78.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Knudsen ES, Wang JY. Targeting the RB-pathway in cancer therapy. Clin Cancer Res. 2010;16(4):1094–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal. 1997;9(2):153–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Lu Y, Yang H, Yuan L, Liu G, Zhang C, Hong M, et al. Overexpression of miR-335 confers cell proliferation and tumour growth to colorectal carcinoma cells. Mol Cell Biochem. 2015;412(1–2):235–45. doi: 10.1007/s11010-015-2630-9.PubMedGoogle Scholar
  81. 81.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Kessenbrock K, Plaks V, Werb Z, matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, et al. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development. 2011;138(2):303–15.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rojas F, Hernandez ME, Silva M, Li L, Subramanian S, Wilson MJ, et al. The oncogenic response to MiR-335 is associated with cell surface expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) activity. PLoS One. 2015;10(7):e0132026. doi: 10.1371/journal.pone.0132026.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gingras D, Beliveau R. Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. Biochim Biophys Acta. 2010;1:142–50.CrossRefGoogle Scholar
  85. 85.
    D’Alessio S, Ferrari G, Cinnante K, Scheerer W, Galloway AC, Roses DF, et al. Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. J Biol Chem. 2008;283(1):87–99.PubMedCrossRefGoogle Scholar
  86. 86.
    Lin X, Wang Z, Zhang R, Feng W. High serum microRNA-335 level predicts aggressive tumor progression and unfavorable prognosis in pediatric acute myeloid leukemia. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2015;17(5):358–64. doi: 10.1007/s12094-014-1237-z.CrossRefGoogle Scholar
  87. 87.
    Bao B, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, et al. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. Stem Cells Dev. 2014;23(16):1947–58. doi: 10.1089/scd.2013.0551.PubMedCrossRefGoogle Scholar
  88. 88.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang R, Dick M, Marme F, Schneeweiss A, Langheinz A, Hemminki K, et al. Genetic variants within miR-126 and miR-335 are not associated with breast cancer risk. Breast Cancer Res Treat. 2011;127(2):549–54. doi: 10.1007/s10549-010-1244-x.PubMedCrossRefGoogle Scholar
  90. 90.
    Hafez MM, Hassan ZK, Zekri ARN, Gaber AA, Rejaie SSA, Sayed-Ahmed MM, et al. MicroRNAs and metastasis-related Gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev. 2012;13(2):591–8. doi: 10.7314/apjcp.2012.13.2.591.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu J, Mao Q, Liu Y, Hao X, Zhang S, Zhang J. Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu. 2013;25(1):46–54. doi: 10.3978/j.issn.1000-9604.2012.11.04.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clinical & experimental metastasis. 2012;29(2):123–32. doi: 10.1007/s10585-011-9435-3.CrossRefGoogle Scholar
  93. 93.
    Cui L, Hu Y, Bai B, Zhang S. Serum miR-335 level is associated with the treatment response to trans-arterial chemoembolization and prognosis in patients with hepatocellular carcinoma. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015;37(1):276–83. doi: 10.1159/000430352.CrossRefGoogle Scholar
  94. 94.
    Slattery ML, Herrick JS, Mullany LE, Valeri N, Stevens J, Caan BJ, et al. An evaluation and replication of miRNAs with disease stage and colorectal cancer-specific mortality. International journal of cancer Journal international du cancer. 2015;137(2):428–38. doi: 10.1002/ijc.29384.PubMedCrossRefGoogle Scholar
  95. 95.
    Peng HH, Zhang YD, Gong LS, Liu WD, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. OncoTargets and therapy. 2013;6:1625–30. doi: 10.2147/OTT.S53030.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Schmitz KJ, Helwig J, Bertram S, Sheu SY, Suttorp AC, Seggewiss J, et al. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol. 2011;64(6):529–35. doi: 10.1136/jcp.2010.085621.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chabre O, Libe R, Assie G, Barreau O, Bertherat J, Bertagna X, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocrine-related cancer. 2013;20(4):579–94. doi: 10.1530/ERC-13-0051.PubMedGoogle Scholar
  98. 98.
    Soon PS, Tacon LJ, Gill AJ, Bambach CP, Sywak MS, Campbell PR, et al. miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin Cancer Res. 2009;15(24):7684–92. doi: 10.1158/1078-0432.CCR-09-1587.PubMedCrossRefGoogle Scholar
  99. 99.
    Jiang J, Sun X, Wang W, Jin X, Bo X, Li Z, et al. Tumor microRNA-335 expression is associated with poor prognosis in human glioma. Med Oncol. 2012;29(5):3472–7. doi: 10.1007/s12032-012-0259-z.PubMedCrossRefGoogle Scholar
  100. 100.
    Ma J, Li N, Guarnera M, Jiang F. Quantification of plasma miRNAs by digital PCR for cancer diagnosis. Biomark Insights. 2013;8:127–36. doi: 10.4137/BMI.S13154.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Zhang BJ, Gong HY, Zheng F, Liu DJ, Liu HX. Up-regulation of miR-335 predicts a favorable prognosis in esophageal squamous cell carcinoma. Zhang BJ, gong HY, Zheng F, et al. up-regulation of miR-335 predicts a favorable prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(9):6213–8.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Yingchun L, Rong Z, Kun Y, Ying Y, Zhuogang L. Bone marrow MicroRNA-335 level predicts the chemotherapy response and prognosis of adult acute myeloid leukemia. Medicine. 2015;94(33):e0986. doi: 10.1097/MD.0000000000000986.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang C, Jiang T. MicroRNA-335 represents an independent prognostic marker in cervical cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(8):5825–30. doi: 10.1007/s13277-015-3252-2.CrossRefGoogle Scholar
  104. 104.
    Cao J, Cai J, Huang D, Han Q, Chen Y, Yang Q, et al. miR-335 represents an independent prognostic marker in epithelial ovarian cancer. Am J Clin Pathol. 2014;141(3):437–42. doi: 10.1309/AJCPLYTZGB54ISZC.PubMedCrossRefGoogle Scholar
  105. 105.
    Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett. 2012;4(5):1037–42. doi: 10.3892/ol.2012.866.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Long-ji Luo
    • 1
    • 2
  • Dan-dan Wang
    • 2
    • 3
  • Jing Wang
    • 2
    • 3
  • Fan Yang
    • 1
    • 2
  • Jin-hai Tang
    • 2
  1. 1.Department of General SurgeryXuzhou Medical UniversityXuzhouChina
  2. 2.Department of General SurgeryJiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjingChina
  3. 3.Nanjing Medical UniversityNanjingChina

Personalised recommendations