Advertisement

Tumor Biology

, Volume 37, Issue 12, pp 16367–16375 | Cite as

MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma

  • Xiao-xu Wang
  • Jue Liu
  • Yi-min Tang
  • Liang Hong
  • Zhi Zeng
  • Guang-hua Tan
Original Article

Abstract

MicroRNAs (miRNAs) are a type of small noncoding RNAs that often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the functions and the mechanism of miR-638 in osteosarcoma (OS). The expression of miR-638 in OS and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by CCK8 assay. Different assays, including bioinformatics algorithms, luciferase report assay, and Western blotting, were used to identify the target gene proviral integration site for Moloney murine leukemia virus 1 (PIM1) of miR-638 in OS. The expression of PIM1 in clinical OS tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in OS tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in OS than in NCTs, which may induce the corresponding downregulation of miR-638 in OS. Ectopic expression of miR-638 inhibited OS cell growth in vitro. Subsequently, we identified that PIM1 is the downstream target gene of miR-638 in OS cells, and silencing PIM1 expression phenocopied the inhibitory effect of miR-638 on OS cell proliferation. Furthermore, we observed that PIM1 was overexpressed in OS tissues, and high expression of PIM1 in OS predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor through inhibiting PIM1 expression in OS.

Keywords

Osteosarcoma miR-638 PIM1 Proliferation 

Notes

Compliance with ethical standards

All of the human materials were obtained with informed consent, and this project was approved by the Clinical Research Ethics Committee of University of South China.

Supplementary material

13277_2016_5379_MOESM1_ESM.docx (15 kb)
Table S1 (DOCX 15 kb)
13277_2016_5379_MOESM2_ESM.docx (14 kb)
Table S2 (DOCX 14 kb)
13277_2016_5379_MOESM3_ESM.docx (14 kb)
Table S3 (DOCX 14 kb)

References

  1. 1.
    Fazi F, Blandino G. MicroRNAs: non coding pleiotropic factors in development, cancer prevention and treatment. Microrna. 2013;2:81.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang ZM, WJ D, Piazza GA, Xi Y. MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacol Sin. 2013;34:1374–80.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro' E, Levine, AJ, Bernardini, S, Garabadgiu, AV, Melino, G, Candi, E: MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 2014;33:5173–5182.Google Scholar
  4. 4.
    Lulla RR, Costa FF, Bischof JM, Chou PM, de F BM, Vanin EF, Soares MB. Identification of differentially expressed MicroRNAs in osteosarcoma. Sarcoma. 2011;2011:732690.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol. 2013;34:2093–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33:3029–35.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Poletajew S, Fus L, Wasiutynski A. Current concepts on pathogenesis and biology of metastatic osteosarcoma tumors. Ortop Traumatol Rehabil. 2011;13:537–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Sun X, Geng X, Zhang J, Zhao H, Liu Y. MiR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism. Mol Cell Biochem. 2015;403:139–47.CrossRefPubMedGoogle Scholar
  9. 9.
    Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X: The downregulation of MiR-182 is associated with the growth and invasion of osteosarcoma cells through the regulation of TIAM1 expression. PLoS One 2015; 10:e121175.Google Scholar
  10. 10.
    Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI. MiR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6:4920–35.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB. Micro RNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget. 2015;6:8875–89.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zheng Z, Ding M, Ni J, Song D, Huang J, Wang J. MiR-142 acts as a tumor suppressor in osteosarcoma cell lines by targeting Rac1. Oncol Rep. 2015;33:1291–9.PubMedGoogle Scholar
  13. 13.
    Pei H, Jin Z, Chen S, Sun X, Yu J, Guo W. MiR-135b promotes proliferation and invasion of osteosarcoma cells via targeting FOXO1. Mol Cell Biochem. 2015;400:245–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu M, Jin H, CX X, Sun B, Song ZG, Bi WZ, Wang Y. MiR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23:89–98.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, Cai XH. MiR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72.CrossRefPubMedGoogle Scholar
  16. 16.
    He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, Wang D. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388:35–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci. 2012;125:382–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang F, Lou JF, Cao Y, Shi XH, Wang P, Xu J, Xie EF, Xu T, Sun RH, Rao JY, Huang PW, Pan SY, Wang H: MiR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy. Exp Mol Med 2015; 47:e162.Google Scholar
  19. 19.
    Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kottek T, Schauer M, Franz S, Saalbach A, Anderegg U, Wolkenhauer O, Schadendorf D, Simon JC, Magin T, Vera J, Kunz M. MiR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget. 2015;6:2966–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, Teal CB, Man YG, Brem RF, Fu SW. MiR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:–435.Google Scholar
  21. 21.
    Ma K, Pan X, Fan P, He Y, Gu J, Wang W, Zhang T, Li Z, Luo X. Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol Cancer. 2014;13:118.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xia Y, Wu Y, Liu B, Wang P, Chen Y. Downregulation of miR-638 promotes invasion and proliferation by regulating SOX2 and induces EMT in NSCLC. FEBS Lett. 2014;588:2238–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, Song TS, Huang C, Shao Y. MiR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci. 2014;59:1743–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. MiR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem. 2015;290:1818–28.CrossRefPubMedGoogle Scholar
  25. 25.
    Dweep H, Georgiou GD, Gretz N, Deltas C, Voskarides K, Felekkis K: CNVs-microRNAs interactions demonstrate unique characteristics in the human genome. An interspecies in silico analysis. PLoS One 2013; 8:e81204.Google Scholar
  26. 26.
    Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR, Scherer SW, Bassett AS. Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry. 2015;77:158–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Holder SL, Abdulkadir SA. PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 2014;14:105–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Merkel AL, Meggers E, Ocker M. PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drugs. 2012;21:425–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim W, Youn H, Seong KM, Yang HJ, Yun YJ, Kwon T, Kim YH, Lee JY, Jin YW, Youn B. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res. 2011;176:539–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Yan B, Yau EX, Samanta S, Ong CW, Yong KJ, Ng LK, Bhattacharya B, Lim KH, Soong R, Yeoh KG, Deng N, Tan P, Lam Y, Salto-Tellez M. Clinical and therapeutic relevance of PIM1 kinase in gastric cancer. Gastric Cancer. 2012;15:188–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res. 2013;70:90–101.CrossRefPubMedGoogle Scholar
  32. 32.
    Zemskova M, Sahakian E, Bashkirova S, Lilly M. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J Biol Chem. 2008;283:20635–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li J, Loveland BE, Xing PX. Anti-Pim-1 mAb inhibits activation and proliferation of T lymphocytes and prolongs mouse skin allograft survival. Cell Immunol. 2011;272:87–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571:43–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Santio NM, Eerola SK, Paatero I, Yli-Kauhaluoma J, Anizon F, Moreau P, Tuomela J, Harkonen P, Koskinen PJ: Pim kinases promote migration and metastatic growth of prostate cancer xenografts. PLoS One 2015; 10:e130340.Google Scholar
  36. 36.
    Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma. 2008;49:2081–90.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang J, Anderson PD, Luo W, Gius D, Roh M, Abdulkadir SA. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene. 2012;31:1794–803.CrossRefPubMedGoogle Scholar
  39. 39.
    Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer. 2008;44:2144–51.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2017

Authors and Affiliations

  • Xiao-xu Wang
    • 1
  • Jue Liu
    • 2
  • Yi-min Tang
    • 3
  • Liang Hong
    • 1
  • Zhi Zeng
    • 1
  • Guang-hua Tan
    • 1
  1. 1.Department of Joint Surgery, the Second Affiliated HospitalUniversity of South ChinaHengyangChina
  2. 2.Department of Dobstertics and Gynecology, the Second Affiliated HospitalUniversity of South ChinaHengyangChina
  3. 3.Department of Nursing, the First Affiliated HospitalUniversity of South ChinaHengyangChina

Personalised recommendations