Tumor Biology

, Volume 37, Issue 11, pp 14513–14536 | Cite as

Natural products against cancer angiogenesis

  • El Bairi Khalid
  • EL-Meghawry EL-Kenawy Ayman
  • Heshu Rahman
  • Guaadaoui Abdelkarim
  • Agnieszka Najda
Review

Abstract

The process of angiogenesis is quite well-known nowadays. Some medicines and extracts affecting this process are already used routinely in supporting the conventional treatment of many diseases that are considered angiogenic such as cancer. However, we must be aware that the area of currently used drugs of this type is much narrower than the theoretical possibilities existing in therapeutic angiogenesis. Plant substances are a large and diverse group of compounds that are found naturally in fruits, vegetables, spices, and medicinal plants. They also have different anticancer properties. The aim of this literature review article is to present the current state of knowledge concerning the molecular targets of tumor angiogenesis and the active substances (polyphenols, alkaloids, phytohormones, carbohydrates, and terpenes) derived from natural sources, whose activity against cancer angiogenesis has been confirmed.

Keywords

Natural products Angiogenesis Targets Chemoprevention Cancer 

Abbreviations

AFGF

Acidic fibroblast growth factor

AP-1

Activator protein 1

AIF

Apoptosis-inducing factor

Akt

Ak strain thymoma

α-DFMO

α-Difluoromethylornithine

Ang

Angiogenin

ANGPT

Angiopoietin

APAF

Apoptotic protease-activating factor

ATF-4

Activating transcription factor 4

BAP

6-Benzylaminopurine

Bax

Bcl-2-associated X protein

Bcl-2

B cell lymphoma 2

bFGF

Basic fibroblast growth factor

CAM

Chorioallantoic membrane

CD151

Cluster of differentiation 151

Cdc42

Cell division control protein 42 homolog

CDK

Cyclin-dependent kinase

clAP

Calf-intestinal alkaline phosphatase

COX-2

Cyclooxygenase-2

CYP4F3

Leukotriene-B(4) omega-hydroxylase 2

Diablo

Direct IAP-binding protein with low pI

DLL4

Delta-like ligand 4

DMXAA

Dimethyl xanthenyl acetic acid

DNA

Deoxyribonucleic acid

E2(PGE2)

Prostaglandin E2

ECs

Endothelial cells

EGF

Epidermal growth factor

EGFL7

EGF-like domain-containing protein 7

ERK

Extracellular signal-regulated kinases

FasL

Fas ligand

FGF

Fibroblast growth factor

GM-CSF

Granulocyte-macrophage colony-stimulating factor

GSH

Glutathione

ROS

Reactive oxygen species

HER2

Human epidermal receptor 2

HGF

Hepatocyte growth factor

HIF

Hypoxia-inducible factor

IL-8

Interleukin-8

JAK

Janus kinase

JNK

c-Jun N-terminal kinases

LOX

Lipoxygenase

MAP

Mitogen-activated protein

MCP-1

Monocyte chemoattractant protein 1

MRI

Magnetic resonance imaging

mTOR

Mammalian target of rapamycin

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

NRPs

Neuropilins

pAK

p21 activated kinase

PARP

Poly ADP ribose polymerase

PDGF

Platelet-derived growth factor

PEDF

Pigment epithelium-derived factor

PERK

PKR-like endoplasmic reticulum kinase

PI3K

Phosphatidylinositol-3-kinase

PIGF

Phosphatidylinositol-glycan biosynthesis class F protein

PLGF

Placental growth factor

PTN

Pleiotrophin

Sema3

Semaphorin-3

SLC7A11

Sodium-independent glutamate transporter

GCLC

Glutamate-cysteine ligase catalytic subunit

NRF-2

Nuclear factor (erythroid-derived 2)-like 2

Smac

Second mitochondria-derived activator of caspases

STING

Stimulator of interferon genes

TGF-β

Transforming growth factor-β

TNF-α

Tumor necrosis factor-α

TSP-1

Thrombospondin-1

uPA

Urokinase-type plasminogen activator

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014;383:549–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferlay J et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:359–86.CrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics. 2015. CA Cancer J Clin. 2015;65:5–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Davis EL. Oh B, Butow PN, Mullan BA, Clarke S. Cancer patient disclosure and patient-doctor communication of complementary and alternative medicine use: a systematic review. Oncologist. 2012;17:1475–81.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Harvey AL, Edrada-Ebel RA, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Rev. Drug Discov. 2015;14(2):111–29.CrossRefGoogle Scholar
  6. 6.
    Wang CZ, He H, Wang X, Yuan CS. Trends in scientific publications of Chinese medicine. Am J Chin Med. 2012;40:1099–108.PubMedCrossRefGoogle Scholar
  7. 7.
    Bell RMA. Review of complementary and alternative medicine practices among cancer survivors. Clin J Oncol Nurs. 2010;14:365–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Hait WN, Hambley TW. Targeted cancer therapeutics. Cancer Res. 2009;69:1263–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Lenzi P, Bocci G, Natale G. John Hunter and the origin of the term “angiogenesis”. Angiogenesis. 2016; 1–2.Google Scholar
  11. 11.
    Ribatti D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis. 2008;11(1):3–10.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Distler JW, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med. 2003;47:149–61.PubMedGoogle Scholar
  13. 13.
    Kinja K, Rohit S, Mandloi A, Sharma I, Savita S. Anti-angiogenic therapy—past, present and future. Rec Res Sci Tech. 2001;3:8–15.Google Scholar
  14. 14.
    Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320:130–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Zielonka TM. Angiogeneza – Część I. Mechanizm powstawania nowych naczyń krwionośnych. Alerg Astma Immun. 2003;8:169–74.Google Scholar
  16. 16.
    King A, Balaji S, Keswani SG, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care (New Rochelle). 2014;3:614–25.CrossRefGoogle Scholar
  17. 17.
    Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Kąt N, Cheresh DA. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456(7223):809–13.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kurzyk A. Angiogenesis—the possibilities, problems and prospects. Progress Biochemistry. 2015;61(1):25–34 [in Polish].Google Scholar
  19. 19.
    Watt SM, Athanassopoulos A, Harris AL. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface. 2010;7(6):731–51.CrossRefGoogle Scholar
  20. 20.
    Wiśniewski T, Makarewicz R, Ziółkowska E, Rystok D, Zekannowska E. Angiogeneza nowotworowa – mechanizmy, czynniki regulujące, leki. Onkologia Info. 2009;6(5):172–8.Google Scholar
  21. 21.
    Namiecińska M, Marciniak K, Nowak JZ. VEGF jako czynnik angiogenny, neurotroficzny i neuroprotekcyjny. Postepy Hig Med Dośw. 2005;59:573–83.Google Scholar
  22. 22.
    Folkman J. Angiogenesis: an organizing principle for drug discovery? Nature Rev Drug Discov. 2007;6:273–86.CrossRefGoogle Scholar
  23. 23.
    Siemerink MJ, Augustin AJ, Schlingemann RO. Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol. 2010;46:4–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Xu WH. Large artery: an important target for cerebral small vessel diseases. Ann Transl Med. 2014;2:78.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shahneh FZ, Baradaran B, Zamani F, Aghebati-Maleki L. Tumor angiogenesis and anti-angiogenic therapies. Hum Antibodies. 2013;22:15–9.PubMedGoogle Scholar
  26. 26.
    Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci. 2007;104:967–72.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17(3):471–94.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104:576–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Herbert SP, Stainier DY. Molecular control of endothelial cell behavior during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153:543–53.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ferrara N, Gerber HP. The biology of VEGF and its receptors. J Nat Med. 2003;9:669–76.CrossRefGoogle Scholar
  32. 32.
    Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Pericytes, microvasular dysfunction, and chronic rejection. Transplantation. 2015;99(4):658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol. 2015:S1084–9521 (15)00166-4.Google Scholar
  36. 36.
    Thomas M, Augustin HG. The role of the angiopoietins in vascular morphogenesis. Angiogenesis. 2009;12(2):125–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Kappou D, Sifakis S, Konstantinidou A, Papantoniou N, Spandidos DA. Role of the angiopoietin/Tie system in pregnancy (review). Exp Ther Med. 2015;9(4):1091–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis. 2016;33:197–210.PubMedCrossRefGoogle Scholar
  39. 39.
    Holderfield MT, Hughes CCW. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res. 2008;102:637–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Roedersheimer M et al. A bone-derived mixture of TGFβ-superfamily members forms a more mature vascular network than bFGF or TGF-β2 in vivo. Angiogenesis. 2006;8(4):327–38.CrossRefGoogle Scholar
  41. 41.
    Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res. 2010;31(1):158.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Umikawa M, Umikawa A, Asato T, Takei K, Matsuzaki G, Kariya K, Zhang CC. Angiopoietin-like protein 2 induces proinflammatory responses in peritoneal cells. Biochem Biophys Res Commun. 2015;467(2):235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wagner M et al. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis. 2012;15(3):481–95.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208.PubMedCrossRefGoogle Scholar
  45. 45.
    Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007;21(20):2511–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Sainson RCA, Harris AL. Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis. 2008;11(1):41–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Gorantla B et al. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma. Angiogenesis. 2013;16(1):85–100.PubMedCrossRefGoogle Scholar
  48. 48.
    Serini G, Maione F, Bussolino F. Semaphorins and tumor angiogenesis. Angiogenesis. 2009;12(2):187–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou H et al. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis. 2012;15(3):391–407.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Geretti E, Shimizu A, Klagsbrun M. Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis. 2008;11(1):31–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Staton CA. Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans. 2011;39:1565–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Leszczynska K, Kaur S, Wilson E, Bicknell R, Heath VL. The role of RhoJ in endothelial cell biology and angiogenesis. Biochem Soc Trans. 2011;39:1606–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Bailey RL, Herbert JM, Khan K, Heath VL, Bicknell R, Tomlinson MG. The emerging role of tetraspanin microdomains. Biochem Soc Trans. 2011;39(6):1667–73. doi:10.1042/BST20110745.PubMedCrossRefGoogle Scholar
  54. 54.
    Egginton S. In vivo shear stress response. Biochem Soc Trans. 2011;39:1633–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhuang X, Cross D, Heath VL, Bicknell R. Shear stress, tip cells and regulators of endothelial migration. Biochem Soc Trans. 2011;39:1571–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Francis ME, Uriel S, Brey EM. Endothelial cell-matrix interactions in neovascularization. Tissue Eng Part B Rev. 2008;14(1):19–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Laurenzana A, Fibbi G, Margheri F, Biagioni A, Luciani C, Del Rosso M, Chillà A. Endothelial progenitor cells in sprouting angiogenesis: proteases pave the way. Curr Mol Med. 2015;15(7):606–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009;12:113–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Gianni-Barrera R et al. VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis. 2013;16(1):123–36.PubMedCrossRefGoogle Scholar
  62. 62.
    VanHinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12.CrossRefGoogle Scholar
  63. 63.
    Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomaki A, Aranda E, Miura N, Yla-Herttuala S, Fruttiger M, Makinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nat Cell Biol. 2011;13:1202–13.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26(6):747–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Lau ST, Lin ZX, Zhao M, Leung PS. Brucea javanica fruit induces cytotoxicity and apoptosis in pancreatic adenocarcinoma cell lines. Phytother Res. 2008;22:477–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee RT, Hlubocky F, Hu JJ, Stafford R, Daugherty C. An international pilot study of oncology physicians? Opinions and practices on complementary and alternative medicine (CAM). Integr Cancer Ther. 2008;7(2):70–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee SM, Kwon JI, Choi YH, Eom HS, Chi GY. Induction of G2/M arrest and apoptosis by water extract of Strychni semen in human gastric carcinoma AGS cells. Phytother Res. 2008;22(6):752–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Yeh JC, Cindrova-Davies T, Belleri M, Morbidelli L, Miller N, Cho CW, Chan K, Wang YT, Luo GA, Ziche M, Presta M, Charnock-Jones DS, Fan TP. The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. Angiogenesis. 2011;14(2):187–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Rasul A, Yu B, Khan M, Zhang K, Iqbal F, Ma T, Yang H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol. 2012;40(4):1153–61.PubMedGoogle Scholar
  71. 71.
    Lumlerdkij N et al. Cytotoxicity of medicinal plants used in cancer prevention in Thailand. Planta Med. 2015;81(16) PW_31.Google Scholar
  72. 72.
    Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer—a review. Target Oncol. 2014;9(4):295–310.PubMedCrossRefGoogle Scholar
  73. 73.
    de Vogel S, Dindore V, van Engeland M, Goldbohm RA, van den Brandt PA, Weijenberg MP. Dietary folate, methionine, riboflavin, and vitamin B-6 and risk of sporadic colorectal cancer. J Nutr. 2008;138:2372–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670–95.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Danciu C, Avram S, Gaje P, Pop G, Şoica C, Craina M, Dumitru C, Dehelean C, Peev C. An evaluation of three nutraceutical species in the Apiaceae family from the western part of Romania: antiproliferative and antiangiogenic potential. J Agroalimentary Processes Technol. 2013;19(2):173–9.Google Scholar
  76. 76.
    Sauer, Heinrich, et al. Herbal ingredients for the inhibition of tumour-induced angiogenesis. Botanical Medicine in Clinical Practice. 2008. p. 335.Google Scholar
  77. 77.
    Carvalho AA, Costa PMD, Vieira GC, Jamacaru FVF, Moraes MO, Cavalcanti BC, Pessoa C. Natural products used as candidates for angiogenesis inhibitors in cancer therapy. Trends Org Chem. 2011;15:79–93.Google Scholar
  78. 78.
    Dudkowska M, Kucharewicz K. Natural compounds—modulators of senescence and cell death. Postępy Biochemii. 2014;60(2):207–20.PubMedGoogle Scholar
  79. 79.
    Lin W, Zhao J, Cao Z, Zhuang Q, Zheng L, Zeng J, Hong Z, Peng J. Livistona chinensis seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway. Oncol Rep. 2014;31:1723–8.PubMedGoogle Scholar
  80. 80.
    Rasul A, Khan M, Ali M, Li J, Li X. Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. Sci World J. 2013;2013:9. doi:10.1155/2013/248532.CrossRefGoogle Scholar
  81. 81.
    Jennifer AD, Jennifer EH, Gerald EH. Role of apoptosis in anti-angiogenic cancer therapies. In: Gewirtz DA, Holt SE, Grant S, editors. Apoptosis, senescence and cancer. New York: Humana Press Inc.; 2007. p. 537–56.Google Scholar
  82. 82.
    Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Am Assoc Cancer Res. 2014;8(26):1–27.Google Scholar
  83. 83.
    Ludwiczuk A, Najda A, Wolski T, Baj T. Chromatographic determination of the content and the composition of extracts and essential oils from the fruits of three varieties of stalk celery (Apium graveolens L. var dulce Mill. Pers.). JPC-J Planar Chromat. 2001;14(6):400–4.Google Scholar
  84. 84.
    Buczkowska H, Dyduch J, Najda A. Capsaicinoids in hot pepper depending on fruit maturity stage and harvest date. Acta Sci Pol-Hortorum Cultus. 2013;6:183–96.Google Scholar
  85. 85.
    Kapłan M, Najda A. Antioxidant activity of vine fruits depending on their colouring. Chemija. 2014;25(1):51–5.Google Scholar
  86. 86.
    Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules. 2014;19:11679–721.PubMedCrossRefGoogle Scholar
  87. 87.
    Najda A, Dyduch-Siemińska M, Dyduch J, Gantner M. Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Ann Agric Envir Med. 2014;21(2):339–43.CrossRefGoogle Scholar
  88. 88.
    Najda A, Dyduch J, Świca K, Kapłan M, Papliński R, Sachadyn-Król M, Klimek K. Identification and profile of furanocoumarins from the ribbed celery (Apium graveolens L. Var. dulce mill. / Pers.). Food Sci Tech Res. 2015;21(1).Google Scholar
  89. 89.
    Najda A. Toxic substances in plants with built structure with nitrogen. Episteme. 2014;25(1):65–76.Google Scholar
  90. 90.
    Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39:283–99.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shehzad A, Le J, Lee YS. Curcumin in various cancers. Biofactors. 2013;39:56–68.PubMedCrossRefGoogle Scholar
  92. 92.
    Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. BiochemBiophys Res Commun. 2014;448:15–21.CrossRefGoogle Scholar
  93. 93.
    Martinez RM, Pinho-Ribeiro FA, Steffen VS, Silva TC, Caviglione CV, Bottura C, Fonseca MJ, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri Jr WA, Casagrande R. Topical formulation containing naringenin: efficacy against ultraviolet b irradiation-induced skin inflammation and oxidative stress in mice. PLoS One. 2016;11(1). doi:10.1371/journal.pone.0146296.
  94. 94.
    Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol. 2002;40(8):1091–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Najda A, Błaszczyk L, Winiarczyk K, Dyduch J, Tchórzewska D. Comparative studies of nutritional and health-enhancing properties in the “garlic-like” plant Allium ampeloprasum var. ampeloprasum (GHG-L) and A. sativum. Sci Horticulturae. 2016;201:247–55.CrossRefGoogle Scholar
  96. 96.
    Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods HumNutr. 2010;65:158–63.CrossRefGoogle Scholar
  97. 97.
    Petiwala SM, Berhe S, Li G, Puthenveetil AG, Rahman O, Nonn L, Johnson JJ. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth. PLoS One. 2014;9:e89772.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kwon H.J., Shim J.S., Kim J.H., Cho H.Y., Yum Y.N., Kim S.H., Yu J. Betulinic acid inhibits growth factor-induced angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn J Cancer Res 2002; 93(4): 417–425.Google Scholar
  99. 99.
    Shimamura M, Hazato T, Ashino H, Yamamoto Y, Iwasaki E, Tobe H, Yamamoto K, Yamamoto S. Inhibition of angiogenesis by humulone; a bitter acid from beer hop. Biochem.Biophys. Res. Commun. 2001;289(1):220–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Shen T, Xie CF, Wang XN, Luo HX. Stilbenoids. In: Ramawat KG, Merillon JM, editors. Natural products. Berlin: Springer; 2013. p. 1901–49.CrossRefGoogle Scholar
  102. 102.
    Foitzik T, Hotz HG, Hotz B, Wittig F, Buhr HJ. Selective inhibition of cyclooxygenase-2 (COX-2) reduces prostaglandin E2 production and attenuates systemic disease sequelae in experimental pancreatitis. Hepato-Gastroenterology. 2003;50(52):1159–62.PubMedGoogle Scholar
  103. 103.
    Höper MM, Voelkel NF, Bates TQ, Allard JD, Horan M, Shepherd D, Tudier R. Prostaglandin induce VEGF growth factor in human monocytic cell lines and rat lungs via cAMP. Am J Respir Cell Mol Biol. 1997;17(6):748–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Li T, Hu J, Du S, Chen Y, Wang S, Wu Q. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes. Mol Vis. 2014;20:1109–21.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Romano M, Claria J. Cyclooxygenase-2 and 5-lipoxygenase converging function on cell proliferation and angiogenesis: implication for cancer therapy. FASEB J. 2003;17(14):1986–95.PubMedCrossRefGoogle Scholar
  106. 106.
    Tuncer S, Banerjee S. Eicosanoid pathway in colorectal cancer: recent updates. World J Gastroenterol. 2015;21(41):11748–66.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bardia A, Barton DL, Prokop LJ, Bauer BA, Moynihan TJ. Efficacy of complementary and alternative medicine therapies in relieving cancer pain: a systematic review. Am Soc Clin Oncol. 2006;24(34):5457–64.CrossRefGoogle Scholar
  108. 108.
    Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer. 2012;64:1058–69.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Huang S et al. Grape seed proanthocyanidins inhibit angiogenesis via the downregulation of both vascular endothelial growth factor and angiopoietin signaling. Nutr Res. 2012;32(7):530–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Taraphdar AK, Roy M, Bhattacharya RK. Natural products as inducers of apoptosis: implication for cancer therapy and prevention. Current Sci. 2001;80:1387–96.Google Scholar
  111. 111.
    Molassiotis A, Fernandez-Ortega P, Pud D, Ozden G, Scott JA, Panteli V, Margulies A, Browall M, Magri M, Selvekerova S. Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol. 2005;16:655–63.PubMedCrossRefGoogle Scholar
  112. 112.
    Loboda A, Cisowaski J, Zarebski A, Jazwa A, Rivera Nunez D, Kyprotakis Z, Heinrich M, Dulak J. Effect of plant extracts on angiogenic activities of endothelial cells and keratinomycetes. J Physiol Pharmacol. 2005;1:125–37.Google Scholar
  113. 113.
    Lamy S, Akla N, Ouanouki A, Lord-Dufour S, Béliveau R. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway. Exp Cell Res. 2012;318(13):1586–96.PubMedCrossRefGoogle Scholar
  114. 114.
    Kubota Y. Tumor angiogenesis and anti-angiogenic therapy. Keio J Med. 2012;61(2):47–56.PubMedCrossRefGoogle Scholar
  115. 115.
    Ribatti D, Nico B, Vacca A, Roncali L, Djonov V. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and antiangiogenesis in vivo. Ant Rec. 2001;264:317–24.CrossRefGoogle Scholar
  116. 116.
    Durupt F, Koppers-Lalic D, Balme B, Budel L, Terrier O, Lina B, Thomas L, Hoeben RC, Rosa-Calatrava M. The chicken chorioallantoic membrane tumor assay as model for qualitative testing of oncolytic adenoviruses. Cancer Gene Ther. 2012;19:58–68.PubMedCrossRefGoogle Scholar
  117. 117.
    Hsin CH, Wu BC, Chuang CY, Yang SF, Hsieh YH, Ho HY, Lin HP, Chen MK, Lin CW. Selaginella tamariscina extract suppresses TPA-induced invasion and metastasis through inhibition of MMP-9 in human nasopharyngeal carcinoma HONE-1 cells. BMC Complement Altern Med. 2013;13:234–45.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yi JM, Park JS, Oh SM, Lee J, Kim J, Oh DS, Bang OS, Kim NS. Ethanol extract of Gleditsia sinensis thorn suppresses angiogenesis in vitro and in vivo. BMC ComplementAltern Med. 2012;12:243–51.Google Scholar
  119. 119.
    Kim EC, Kim SH, Piao SJ, Kim TJ, Bae k, Kim HS, Hong SS, Lee BI, Nam M. Antiangiogenic activity of Acer tegmentosum Maxim water extract in vitro and in vivo. J Korean Med Sci. 2015;30:979–87.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Najda A. Planning and evaluation of phytochemical plants in various growth phases of two varieties of celery (Apium graveolens L. var dulce Mil./Pers.). 2004; PhD Dissertation, University of Life Sciences in Lublin.Google Scholar
  121. 121.
    Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27:962–78.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhang T, Jia W, Sun X. 3-n-Butylphthalide (NBP) reduces apoptosis and enhances vascular endothelial growth factor (VEGF) up-regulation in diabetic rats. Neurol Res. 2010;32:390–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Tai J, Cheung S, Wu M, Hasman D. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomed. 2012;19:436–43.CrossRefGoogle Scholar
  124. 124.
    Petiwala SM, Johnson JJ. Diterpenes from rosemary (Rosmarinus officinalis): defining their potential for anti-cancer activity. Cancer Lett. 2015;367:93–102.PubMedCrossRefGoogle Scholar
  125. 125.
    Agostinis P, Vantieghem A, Merlevede W, de Witte PAM. Hypericin in cancer 85 treatment: more light on the way. Int J Biochem Cell Biol. 2002;34:221–41.PubMedCrossRefGoogle Scholar
  126. 126.
    Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F. Cytokinins: new apoptotic inducers in plants. Planta. 2003;216:413–21.PubMedGoogle Scholar
  127. 127.
    Kuttan G., Pratheeshkumar P., Manu K.A,, Kuttan R. Inhibition of tumor progression by naturally occurring terpenoids. Pharm Biol 2011; 49: 995–1007.PubMedCrossRefGoogle Scholar
  128. 128.
    Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech. 2013;3:439–59.Google Scholar
  129. 129.
    Parikh NR, Mandal A, Bhatia D, Siveen KS, Sethi G, Bishayee A. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochem Rev. 2014;13:793–810.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Albini A et al. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol. 2012;9(9):498–509.PubMedCrossRefGoogle Scholar
  131. 131.
    Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Rev. 2012;38:76–87.CrossRefGoogle Scholar
  132. 132.
    Beghlal D, El Bairi K, Marmouzi I, Haddar L, Mohamed B. Phytochemical, organoleptic and ferric reducing properties of essential oil and ethanolic extract from Pistacia lentiscus (L.). Asian Pac J Trop Dis. 2016;6(4):305–10.CrossRefGoogle Scholar
  133. 133.
    Koohpar ZK, Entezari M, Movafagh A, Hashem M. Anticancer activity of curcumin on human breast adenocarcinoma: role of mcl-1 gene. Iran J Cancer Prev. 2015;8(3):e2331.Google Scholar
  134. 134.
    Wolanin K, Piwocka K. Curcumin - from natural medicine clinic. Kosmos. 2008;57:53–65.Google Scholar
  135. 135.
    Kumaravel M, Sankar P, Rukkuma-Ni R. Antiproliferative efect of an analog of curcumin bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione in human breast cancer cells. Eur Rev Med Pharmacol Sci. 2012;16:1900–7.PubMedGoogle Scholar
  136. 136.
    Devasena T, Rajasekarana KN, Menon VP. Bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stressduring colon carcinogenesis. Pharmacol Res. 2002;46:39–45.PubMedCrossRefGoogle Scholar
  137. 137.
    Mohankumar K, Pajaniradje S, Sridharan S, Kumar Singh V, Ronsard L, Banerjea AC, Selvanesan Benson C, Selvaraj Coumar M, Rajagopalan R. Mechanism of apoptotic induction in human breast cancer cell, MCF-7, by an analog of curcumin in comparison with curcumin—an in vitro and in silico approach. Chem Biol Interact. 2014;210:51–63.PubMedCrossRefGoogle Scholar
  138. 138.
    Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clinic Biochem Nutr. 2007;40:92–100.CrossRefGoogle Scholar
  139. 139.
    Ho K, Yazan LS, Ismail N, Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidem. 2009;33:155–60.CrossRefGoogle Scholar
  140. 140.
    Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Aozukay Y, Singhirunnusorn P, Ruchirawat S, Svasti J, Saiki I. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci. 2005;25:57–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Nakazato T, Ito K, Ikeda Y, Kizaki M. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clinic Cancer Res. 2005;11:6040–9.CrossRefGoogle Scholar
  142. 142.
    Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep. 2007;17:1525–31.PubMedGoogle Scholar
  143. 143.
    Bai N, He K, Roller M, Lai CS, Shao X, Pan MH, Ho CT. Flavonoids and phenolic compounds from Rosmarinus officinalis. J Agric Food Chem. 2010;58:5363–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Mulinacci N, Innocenti M, Bellumori M, Giaccherini C, Martini V, Michelozzi M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study. Talanta. 2011;85:167–76.PubMedCrossRefGoogle Scholar
  145. 145.
    Bernardes WA, Lucarini R, Tozatti MG, Souza MG, Silva ML, Filho AA, et al. Antimicrobial activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol. Chem Biodivers. 2010;7:1835–40.PubMedCrossRefGoogle Scholar
  146. 146.
    Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules. 2010;15:7792–814.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Nabekura T, Yamaki T, Hiroi T, Ueno K, Kitagawa S. Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol Res. 2010;61:259–63.PubMedCrossRefGoogle Scholar
  148. 148.
    Yu YM, Lin CH, Chan HC, Tsai HD. Carnosic acid reduces cytokine-induced adhesion molecules expression and monocyte adhesion to endothelial cells. Eur J Nutr. 2009;48:101–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Johnson JJ. Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011;305:1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    López-Jiménez A, García-Caballero M, Medina MA, Quesada AR. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutri. 2013;51(1):85–95.CrossRefGoogle Scholar
  151. 151.
    Schempp CM, Kirkin V, Simon-Haarhaus B, Kersten A, Kiss J, Termeer CC, Gilb B, Kaufmann T, Borner C, Sleeman JP, Simon JC. Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s wort that acts by induction of apoptosis. Oncogene. 2002;21:1242–50.PubMedCrossRefGoogle Scholar
  152. 152.
    Hostanska K, Reichling J, Bommer S, Weber M, Saller R. Hyperforin a constituent of St. John’s wort (Hypericum perforatum L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines. Eur J Pharm Biopharm. 2003;56:121–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Dona M, Dell’Aica I, Pezzato E, Sartor L, Calabrese F, Della Barbera M, Donella-Deana A, Appendino G, Borsarini A, Caniato R, Garbisa S. Hyperforin inhibits cancer invasion and metastasis. Cancer Res. 2004;64:6225–32.PubMedCrossRefGoogle Scholar
  154. 154.
    Martínez-Poveda B, Quesada AR, Medina MA. Hyperforin, a bio-active compound of St. John’s wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Inter J Cancer. 2005;17(5):775–80.CrossRefGoogle Scholar
  155. 155.
    Aggarwal BB, Bhardwaj A, Aggarwal RS, Steram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–840.PubMedGoogle Scholar
  156. 156.
    Roy S, Khanna S, Alessio HM, Vider J, Bagchi D, Bagchi M, Sen CK. Anti-angiogenic property of edible berries. Free Radic Res. 2002;36:1023–31.PubMedCrossRefGoogle Scholar
  157. 157.
    Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F, Alvarez-Barrientos A, Salguero PMF. Resveratrol-induced apoptosis in Mcf-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-κB. Int J Cancer. 2005;115:74–84.PubMedCrossRefGoogle Scholar
  158. 158.
    Kiliańska ZM, Żołnierczyk J, Węgierska-Gądek J. Biological activity of poly (ADP-ribose) -1. Postep. Hig Med Dosw. 2010;64:344–63.Google Scholar
  159. 159.
    Roy P, Kalra N, Prasad S, George J, Skuhla Y. Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharmaceut Res. 2009;26:221–17.CrossRefGoogle Scholar
  160. 160.
    Cao Y, Fu ZD, Wang F, Liu HY, Han R. Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. J Asian Nat Prod Res. 2005;7:205–13.PubMedCrossRefGoogle Scholar
  161. 161.
    Igura K, Ohta T, Kuroda Y, Kaji K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 2001;171:11–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Lin MT, Yen ML, Lin CY, Kuo ML. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of src dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol. 2003;64:1029–36.PubMedCrossRefGoogle Scholar
  163. 163.
    Kanavi MR, Darjatmoko S, Wang S, Azari AA, Farnoodian M, Kenealey JD, van Ginkel PR, Albert DM, Sheibani N, Polans AS. The sustained delivery of resveratrol or a defined grape powder inhibits new blood vessel formation in a mouse model of choroidal neovascularization. Molecules. 2014;19(11):17578–603.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang H, He S, Spee C, Ishikawa K, Hinton DR. SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by resveratrol and its relevance to choroidal neovascularization. Cytokine. 2001;76(2):549–52.CrossRefGoogle Scholar
  165. 165.
    Zhang X, Song Y, Wu Y, et al. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer. 2011;129:2502–11.PubMedCrossRefGoogle Scholar
  166. 166.
    Vitale DC, Piazza C, Melilli B, Drago F, Salomone S. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet. 2013;38(1):15–25.PubMedCrossRefGoogle Scholar
  167. 167.
    Yang H et al. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 2008;9(3):227.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Chen DI, Ping Dou Q. Tea polyphenols and their roles in cancer prevention and chemotherapy. Int J Mol Sci. 2008;9(7):1196–206.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Giovannini C, Scazzocchio B, Varì R, Santangelo C, D’archivio M, Masella R. Apoptosis in cancer and atherosclerosis: polyphenol activities. Sanità Ann Ist Super Sanità. 2007;43:406–16.PubMedGoogle Scholar
  170. 170.
    Huynh H, Nguyen TT, Chan E, Tran E. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-α)- and epidermal growth factor (EGF) induced human PC-3 prostate cancer cell proliferation. Int J Oncol. 2003;23:821–9.PubMedGoogle Scholar
  171. 171.
    Tan WF, Lin LP, Li MH, Zhang YX, Dong JG, Xiao D, Din J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol. 2003;459:255–62.PubMedCrossRefGoogle Scholar
  172. 172.
    O’Leary KA, de Pascual–Tereasa S, Needs PW, Bao YP, O’Brien NM, Williamson G. Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat Res. 2004;551:245–54.PubMedCrossRefGoogle Scholar
  173. 173.
    Dash R, Uddin MM, Hosen SM, Rahim ZB, Dinar AM, Kabir MS, Sultan RA, Islam A, Hossain MK. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformat. 2015;11(12):543–9.CrossRefGoogle Scholar
  174. 174.
    Ma ZS, Huynh TH, Ng CP, Do PT, Nguyen TH, Huynh H. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. Int J Oncol. 2004;24:1297–304.PubMedGoogle Scholar
  175. 175.
    Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L. Anti-angiogenic effects of flavonoids and chalcones. Pharmacol Res. 2008;57(4):259–65.PubMedCrossRefGoogle Scholar
  176. 176.
    Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. PNAS. 2008;105:11105–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Rastogi T, Devesa S, Mangtani P, Mathew A, Cooper N, Kao R, Sinha R. Cancer incidence rates among south Asians in four geographic regions: India, Singapore, UK and US. Int J Epidemiol. 2007;37:147–60.PubMedCrossRefGoogle Scholar
  178. 178.
    Mense SM, Hei TK, Ganju RK, Bhat HK. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect. 2008;116:426–33.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Gutierrez RMP. Flavonoids. In: Handbook of compounds with cytotoxic activity isolated from plants. Commack, NY: Nova Science Publishers Inc.; 2007. p. 158–65.Google Scholar
  180. 180.
    Sharma P, Kapoor S. Biopharmaceutical aspects of Brassica vegetables. J Pharm Phytochem. 2015;4(1):140–7.Google Scholar
  181. 181.
    Teicher BA. Newer cytotoxic agents: attacking cancer broadly. Clin Cancer Res. 2008;14:1610–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–76.PubMedCrossRefGoogle Scholar
  183. 183.
    Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood. 1997;94:4143–55.Google Scholar
  184. 184.
    Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105:R15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P, Hicklin D, Kerbel RS. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res. 2002;8:221–32.PubMedGoogle Scholar
  186. 186.
    Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423–36.PubMedCrossRefGoogle Scholar
  187. 187.
    Stempac D, Seely D, Baruchel S. Metronomic dosing of chemotherapy: applications in pediatric oncology. Cancer Investig. 2006;24:432–43.CrossRefGoogle Scholar
  188. 188.
    Verreault M, Strutt D, Masin D, Anantha M, Yung A, Kozlowski P, Waterhouse D, Bally MB, Yapp DT. Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine. BMC Cancer. 2011;11:124–42.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Avramis IA, Kwock R, Avramis VI. Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia T-cell lines. Anticancer Res. 2001;21(4):2281–6.PubMedGoogle Scholar
  190. 190.
    Mabeta P, Pepper MSA. Comparative study on the anti-angiogenic effects of DNA-damaging and cytoskeletal-disrupting agents. Angiogenesis. 2009;12:81–90.PubMedCrossRefGoogle Scholar
  191. 191.
    Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N, Kavallaris M. Beta-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108:2485–94.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Grange C, Bussolati B, Bruno S, Fonsato V, Sapino A, Camussi G. Isolation and characterization of human breast tumor-derived endothelial cells. Oncol Rep. 2006;15:381–6.PubMedGoogle Scholar
  193. 193.
    Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, Wang L, Wu WZ, Qin LX, Tang ZY. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009;15:4838–46.PubMedCrossRefGoogle Scholar
  194. 194.
    Polat U. The effects on metabolism of glucosinolates and their hydrolysis products. J Biol Environ Sci. 2010;4(10):39–42.Google Scholar
  195. 195.
    Chang HK, Shin MS, Yang HY, Lee JW, Kim YS, Lee MH, Kim J, Kim KH, Kim CJ. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol Pharm Bul. 2006;29:1597–602.CrossRefGoogle Scholar
  196. 196.
    Milazzo S, Lejeune S, Ernst E. Laetrile for cancer: a systematic review of the clinical evidence. Suppor Care Cancer. 2007;15:583–95.CrossRefGoogle Scholar
  197. 197.
    Hayes JD, Kelleher MO, Eggleston IM. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Clin Nutr. 2008;47:73–88.CrossRefGoogle Scholar
  198. 198.
    Zalega J, Szostak-Węgierek D. Nutrition in cancer prevention. Part I. Plant polyphenols, carotenoids, dietary fiber. ProblHig Epidemiol. 2013;94:41–9.Google Scholar
  199. 199.
    Kusznierewicz B., Piasek A., Lewandowska J., Śmiechowska A., Bartoszek A., Anti-carcinogenic properties of white cabbage. Żywność Nauka Technologia Jakość 2007; 6: 20–23.Google Scholar
  200. 200.
    Traka M, Mithen R. Glucosinolates, isothiocyanates and human health. Phytochem Rev. 2009;8:269–82.CrossRefGoogle Scholar
  201. 201.
    Casero RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 2007;6(5):373–90.PubMedCrossRefGoogle Scholar
  202. 202.
    Zdrojewicz Z, Lachowski M. The importance of putrescine in the human body. Postepy Hig Med Dosw. 2014;68:393–403.CrossRefGoogle Scholar
  203. 203.
    Kucharzewska P, Welch JE, Svensson KJ, Belting M. The polyamines regulate endothelial cell survival during hypoxic stress through PI3K/AKT and MCL-1. Biochem Bioph Res. 2009;380(2):413–8.CrossRefGoogle Scholar
  204. 204.
    Koomoa DLT, Geerts D, Lange I, Koster J, Pegg AE, Feith DJ, Bachmann AS. DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int J Oncol. 2013;42:1219–28.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Jabłońska-Trypuć A, Czerpak R. The role of connective tissue growth factor (CTGF) in fibroproliferative processes and tissues fibrosis. Postepy Biol Komorki. 2009;36:135–54.Google Scholar
  206. 206.
    Minorsky PV. The hot and the classic. Plant Physiol. 2000;132:1135–6.CrossRefGoogle Scholar
  207. 207.
    Ishii Y, Hori Y, Sakai S, Honma Y. Control of diferentiation and apoptosis of human myeloid leukemia cells by cytokinins and cytokinin nucleosides, plant rediferentiation-inducing hormones. Cell Growth Differ. 2002;13:19–26.PubMedGoogle Scholar
  208. 208.
    Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A. Cytokinins resume: their signaling and role in programmed cell death in plants. Plant Cell Rep. 2013;32:771–80.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Coltella N, Valsecchi R, Ponente M, Ponzoni M, Bernardi R. Synergistic leukemia eradication by combined treatment with retinoic acid and HIF inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RARα and PLZF-RARα-driven leukemia. Clin Cancer Res. 2015;21(16):3685–94.PubMedCrossRefGoogle Scholar
  210. 210.
    Liang C, Guo S, Yang L. Effects of all-trans retinoic acid on VEGF and HIF-1α expression in glioma cells under normoxia and hypoxia and its anti-angiogenic effect in an intracerebral glioma model. Mol Med Rep. 2014;10(5):2713–9.PubMedGoogle Scholar
  211. 211.
    Aditya NP et al. Antiangiogenic effect of combined treatment with curcumin and genistein on human prostate cancer cell line. J Funct Foods. 2014;8:204–13.CrossRefGoogle Scholar
  212. 212.
    Yu X et al. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med Oncol. 2012;29(1):349–57.PubMedCrossRefGoogle Scholar
  213. 213.
    Mirzoeva S, Franzen CA, Pelling JC. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3-and Src-dependent mechanism. Mol Carcinog. 2014;53(8):598–609.PubMedGoogle Scholar
  214. 214.
    Silvan S, Manoharan S. Apigenin prevents deregulation in the expression pattern of cell-proliferative, apoptotic, inflammatory and angiogenic markers during 7, 12-dimethylbenz [a] anthracene-induced hamster buccal pouch carcinogenesis. Arch Oral Biol. 2013;58(1):94–101.PubMedCrossRefGoogle Scholar
  215. 215.
    Kumar S, Raina K, Agarwal R. Chemopreventive and anticancer efficacy of silibinin against colorectal cancer, Multi-Targeted Approach to Treatment of Cancer. Berlin Heidelberg New York: Springer; 2015. p. 339–50.Google Scholar
  216. 216.
    Yang SH, Lin JK, Chen WS, Chiu JH. Yang. Anti-angiogenic effects of silymarin on colon cancer LoVo cell line. J Surg Res. 2003;113(1):133–4l.PubMedCrossRefGoogle Scholar
  217. 217.
    Kim KK et al. Anti-angiogenic activity of cranberry proanthocyanidins and cytotoxic properties in ovarian cancer cells. Int J Oncol. 2012;40(1):227–35.PubMedGoogle Scholar
  218. 218.
    Wang M-L et al. Antiangiogenic activity of indole-3-carbinol in endothelial cells stimulated with activated macrophages. Food Chem. 2012;134(2):811–20.PubMedCrossRefGoogle Scholar
  219. 219.
    Kunimasa K et al. Antiangiogenic effects of indole-3-carbinol and 3,3′-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr. 2010;140(1):1–6.PubMedCrossRefGoogle Scholar
  220. 220.
    Mohan R et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004;7(2):115–22.PubMedCrossRefGoogle Scholar
  221. 221.
    Hussain S et al. Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2-induced angiogenesis. Angiogenesis. 2008;11(3):245–56.PubMedCrossRefGoogle Scholar
  222. 222.
    Nathan P, Zweifel M, Padhani AR, et al. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2012;18(12):3428–39.PubMedCrossRefGoogle Scholar
  223. 223.
    Update—OXiGENE announces positive topline results from randomized phase 2 study GOG186I of ZYBRESTAT(R) in combination with Avastin(R) for recurrent ovarian cancer. www.investor.oxigene.com/releasedetail.cfm?releaseid=832026
  224. 224.
    Zweifel M, Jayson GC, Reed NS, Osborne R, Hassan B, Ledermann J, Shreeves G, Poupard L, Lu SP, Balkissoon J, Chaplin DJ, Rustin GJ. Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Ann Oncol. 2011;22:2036–41.PubMedCrossRefGoogle Scholar
  225. 225.
    Granata R, Locati L, Licitra L. Therapeutic strategies in the management of patients with metastatic anaplastic thyroid cancer: review of the current literature. Curr Opin Oncol. 2013;25:224–8.PubMedGoogle Scholar
  226. 226.
    Ibrahim MA, Do DV, Sepah YJ, Shah SM, Van Anden E, Hafiz G, Donahue JK, Rivers R, Balkissoon J, Handa JT, Campochiaro PA, Nguyen QD. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol. 2013;14:7. doi:10.1186/2050-6511-14-7.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Clinical Trials. U.S. National Institutes of Health. 2016. https://clinicaltrials.gov/. Accessed 10 June 2016.
  228. 228.
    LoRusso PM, Boerner SA, Hunsberger S. Clinical development of vascular disrupting agents: what lessons can we learn from ASA404? J Clin Oncol. 2011;29(22):2952–5.PubMedCrossRefGoogle Scholar
  229. 229.
    McKeage MJ, Von Pawel J, Reck M, et al. Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer. 2008;99(12):2006–12. doi:10.1038/sj.bjc.6604808.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Head M, Jameson MB. The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs. 2010;19(2):295–304.PubMedCrossRefGoogle Scholar
  231. 231.
    Lara, P. N., Douillard, J. Y., Nakagawa, K., Von Pawel, J., McKeage, M. J., et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;JCO-2011.Google Scholar
  232. 232.
    Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs. 2010;19(11):1413–25.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Lorusso PM, Boerner SA, Hunsberger S. Clinical development of vascular disrupting agents: what lessons can we learn from ASA404? J Clin Oncol. 2011;29(22):2951–2.CrossRefGoogle Scholar
  234. 234.
    Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent DMXAA. J Immunol. 2013;190(10):5216–25. doi:10.4049/jimmunol.1300097.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Tsimberidou AA-MA, Akerley W, Schabel MC, et al. Phase I clinical trial of MPC-6827 (Azixa), a microtubule destabilizing agent, in patients with advanced cancer. Mol Cancer Ther. 2010;6827(12):3410–9.CrossRefGoogle Scholar
  236. 236.
    Patterson DM, Zweifel M, Middleton MR, et al. Phase I clinical and pharmacokinetic evaluation of the vascular disrupting agent OXi4503 in patients with advanced solid tumors. Clin Cancer Res. 2012;18(5):1415–25.PubMedCrossRefGoogle Scholar
  237. 237.
    Burns CJ, Fantino E, Powell AK, et al. The microtubule depolymerizing agent CYT997 causes extensive ablation of tumor vasculature in vivo. J Pharmacol Exp Ther. 2011;339(3):799–806.PubMedCrossRefGoogle Scholar
  238. 238.
    Burge M, Francesconi AB, Kotasek D, et al. Phase I, pharmacokinetic and pharmacodynamic evaluation of CYT997, an orally-bioavailable cytotoxic and vascular disrupting agent. Investig New Drugs. 2013;31(1):126–35.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • El Bairi Khalid
    • 1
  • EL-Meghawry EL-Kenawy Ayman
    • 2
    • 3
  • Heshu Rahman
    • 4
    • 5
  • Guaadaoui Abdelkarim
    • 6
  • Agnieszka Najda
    • 7
  1. 1.Independent Research Team in Cancer Biology and Bioactive Compounds, Faculty of Medicine and PharmacyUniversity Mohammed 1stOujdaMorocco
  2. 2.Department of Molecular Biology GEBRIUniversity of Sadat CitySadatEgypt
  3. 3.Pathology Department, College of MedicineTaif UniversityTaifSaudi Arabia
  4. 4.Department of Veterinary Clinical Diagnosis, Faculty of Veterinary MedicineUniversity Putra MalaysiaUPM SerdangMalaysia
  5. 5.Department of Medical Laboratory ScienceKomar University of Science and TechnologySulaimani CityIraq
  6. 6.Laboratory of Genetics and Biotechnology (LGB), Faculty of SciencesMohammed 1st University (UMP)OujdaMorocco
  7. 7.Quality Laboratory of Vegetable and Medicinal Materials, Department of Vegetable Crops and Medicinal PlantsUniversity of Life Sciences in LublinLublinPoland

Personalised recommendations