Skip to main content

Advertisement

Log in

Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Acetylated H3 lysine 23 (H3K23ac) is a specific histone post-translational modification recognized by oncoprotein TRIM24. However, it is not clear whether H3K23ac levels are correlated with TRIM24 expression and what role H3K23ac may have in cancer. In this study, we collected breast carcinoma samples from 121 patients and conducted immunohistochemistry to determine the levels of TRIM24 and H3K23ac in breast cancer. Our results demonstrated that TRIM24 expression is positively correlated with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict shorter overall survival of breast cancer patients. We also showed that both TRIM24 and H3K23ac are higher in HER2-positive patients, and their levels were positively correlated with HER2 levels in breast cancer. Moreover, TRIM24 expression is associated with estrogen receptor (ER) and progesterone receptor (PR) statuses in both our cohort and The Cancer Genome Atlas (TCGA) breast carcinoma. In summary, our results revealed an important role of TRIM24 and H3K23ac in breast cancer and provided further evidence that TRIM24 small-molecule inhibitors may benefit ER- and PR-negative or HER2-positive breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S, et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature. 2010;468(7326):927–32. doi:10.1038/nature09542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chambon M, Orsetti B, Berthe ML, Bascoul-Mollevi C, Rodriguez C, Duong V, et al. Prognostic significance of TRIM24/TIF-1alpha gene expression in breast cancer. Am J Pathol. 2011;178(4):1461–9. doi:10.1016/j.ajpath.2010.12.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li H, Sun L, Tang Z, Fu L, Xu Y, Li Z, et al. Overexpression of TRIM24 correlates with tumor progression in non-small cell lung cancer. PLoS One. 2012;7(5):e37657. doi:10.1371/journal.pone.0037657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui Z, Cao W, Li J, Song X, Mao L, Chen W. TRIM24 overexpression is common in locally advanced head and neck squamous cell carcinoma and correlates with aggressive malignant phenotypes. PLoS One. 2013;8(5):e63887. doi:10.1371/journal.pone.0063887.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu X, Huang Y, Yang D, Li X, Liang J, Lin L, et al. Overexpression of TRIM24 is associated with the onset and progress of human hepatocellular carcinoma. PLoS One. 2014;9(1):e85462. doi:10.1371/journal.pone.0085462.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miao ZF, Wang ZN, Zhao TT, YY X, JH W, Liu XY, et al. TRIM24 is upregulated in human gastric cancer and promotes gastric cancer cell growth and chemoresistance. Virchows Arch. 2015;466(5):525–32. doi:10.1007/s00428-015-1737-4.

    Article  CAS  PubMed  Google Scholar 

  7. Xue D, Zhang X, Liu J, Li N, Liu C, Liu Y, et al. Clinical significance and biological roles of TRIM24 in human bladder carcinoma. Tumour Biol. 2015. doi:10.1007/s13277-015-3393-3.

    Google Scholar 

  8. Zhang LH, Yin AA, Cheng JX, Huang HY, Li XM, Zhang YQ, et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 2015;34(5):600–10. doi:10.1038/onc.2013.593.

    Article  CAS  PubMed  Google Scholar 

  9. Pathiraja TN, Thakkar KN, Jiang S, Stratton S, Liu Z, Gagea M, et al. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells. Oncogene. 2015;34(22):2836–45. doi:10.1038/onc.2014.220.

    Article  CAS  PubMed  Google Scholar 

  10. Jain AK, Allton K, Duncan AD, Barton MC. TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol. 2014;34(14):2695–709. doi:10.1128/MCB.01705-12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Herquel B, Ouararhni K, Davidson I. The TIF1alpha-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription. 2011;2(5):231–6. doi:10.4161/trns.2.5.17725.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, et al. TRIM24 targets endogenous p53 for degradation. Proc Natl Acad Sci U S A. 2009;106(28):11612–6. doi:10.1073/pnas.0813177106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yondola MA. Hearing P. The adenovirus E4 ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha. J Virol. 2007;81(8):4264–71. doi:10.1128/JVI.02629-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peng H, Feldman I, Rauscher 3rd FJ. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol. 2002;320(3):629–44. doi:10.1016/S0022-2836(02)00477-1.

    Article  CAS  PubMed  Google Scholar 

  15. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 1996;15(23):6701–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995;14(9):2020–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zennaro MC, Souque A, Viengchareun S, Poisson E, Lombes MA. New human MR splice variant is a ligand-independent transactivator modulating corticosteroid action. Mol Endocrinol. 2001;15(9):1586–98. doi:10.1210/mend.15.9.0689.

    Article  CAS  PubMed  Google Scholar 

  18. Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J, et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta. 2009;1793(12):1828–36. doi:10.1016/j.bbamcr.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  19. Bodai L, Zsindely N, Gaspar R, Kristo I, Komonyi O, Boros IM. Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster. PLoS One. 2012;7(7):e40565. doi:10.1371/journal.pone.0040565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. doi:10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  21. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi:10.1126/scisignal.2004088.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reiner A, Spona J, Reiner G, Schemper M, Kolb R, Kwasny W, et al. Estrogen receptor analysis on biopsies and fine-needle aspirates from human breast carcinoma. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Am J Pathol. 1986;125(3):443–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Dewey CNRSEM. Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi:10.1186/1471-2105-12-323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khetchoumian K, Teletin M, Tisserand J, Mark M, Herquel B, Ignat M, et al. Loss of TRIM24 (TIF1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet. 2007;39(12):1500–6. doi:10.1038/ng.2007.15.

    Article  CAS  PubMed  Google Scholar 

  25. Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci. 2014;4:45. doi:10.1186/2045-3701-4-45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferri E, Petosa C, McKenna CE. Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol. 2015. doi:10.1016/j.bcp.2015.12.005.

    PubMed  Google Scholar 

  27. Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, et al. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics. 2015;7(2):215–35. doi:10.2217/epi.14.73.

    Article  CAS  PubMed  Google Scholar 

  28. Bennett J, Fedorov O, Tallant C, Monteiro O, Meier J, Gamble V, et al. Discovery of a chemical tool inhibitor targeting the bromodomains of TRIM24 and BRPF. J Med Chem. 2015. doi:10.1021/acs.jmedchem.5b00458.

    Google Scholar 

  29. Palmer WS, Poncet-Montange G, Liu G, Petrocchi A, Reyna N, Subramanian G, et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J Med Chem. 2015. doi:10.1021/acs.jmedchem.5b00405.

    Google Scholar 

  30. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Breast cancer, version 1.2016. J Natl Compr Cancer Netw. 2015;13(12):1475–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyuan Zhang or Zhaoliang Liu.

Ethics declarations

Funding

This study was supported by National Natural Science Foundation of China (grant number 81472636) and Natural Science Foundation of Heilongjiang Province (grant number LC2015033).

Conflicts of interest

None.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the Ethics Committee of Harbin Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Additional information

Li Ma and Lili Yuan contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yuan, L., An, J. et al. Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer. Tumor Biol. 37, 14803–14812 (2016). https://doi.org/10.1007/s13277-016-5344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5344-z

Keywords

Navigation