Advertisement

Tumor Biology

, Volume 37, Issue 11, pp 15315–15324 | Cite as

miR-222 induces Adriamycin resistance in breast cancer through PTEN/Akt/p27kip1 pathway

  • Dan-dan Wang
  • Su-jin Yang
  • Xiu Chen
  • Hong-Yu Shen
  • Long-ji Luo
  • Xiao-hui Zhang
  • Shan-liang Zhong
  • Jian-hua ZhaoEmail author
  • Jin-hai TangEmail author
Original Article

Abstract

The high resistant rate of Adriamycin (Adr) is associated with a poor prognosis of breast cancer in women worldwide. Since miR-222 might contribute to chemoresistance in many cancer types, in this study, we aimed to investigate its efficacy in breast cancer through PTEN/Akt/p27 kip1 pathway. Firstly, in vivo, we verified that miR-222 was upregulated in chemoresistant tissues after surgery compared with the paired preneoadjuvant samples of 21 breast cancer patients. Then, human breast cancer Adr-resistant cell line (MCF-7/Adr) was constructed to validate the pathway from the parental sensitive cell line (MCF-7/S). MCF-7/Adr and MCF-7/S were transfected with miR-222 mimics, miR-222 inhibitors, or their negative controls, respectively. The results showed that inhibition of miR-222 in MCF-7/Adr significantly increased the expressions of PTEN and p27 kip1 and decreased phospho-Akt (p-Akt) both in mRNA and protein levels (p < 0.05) by using quantitative real-time PCR (qRT-PCR) and western blot. MTT and flow cytometry suggested that lower expressed miR-222 enhanced apoptosis and decreased the IC50 of MCF-7/Adr cells. Additionally, immunofluorescence demonstrated that the subcellular location of p27 kip1 was dislocated resulting from the alteration of miR-222. Conversely, in MCF-7/S transfected with miR-222 mimics, upregulation of miR-222 is associated with decreasing PTEN and p27 kip1 and increasing Akt accompanied by less apoptosis and higher IC50. Importantly, Adr resistance induced by miR-222 overexpression through PTEN/Akt/p27 was completely blocked by LY294002, an Akt inhibitor. Taken together, these data firstly elucidated that miR-222 could reduce the sensitivity of breast cancer cells to Adr through PTEN/Akt/p27 kip1 signaling pathway, which provided a potential target to increase the sensitivity to Adr in breast cancer treatment and further improved the prognosis of breast cancer patients.

Keywords

miR-222 PTEN/Akt/p27 pathway Adr resistance Breast cancer 

Notes

Acknowledgments

We thank Shan-liang Zhong and Wei-xian Chen for useful discussions and help in revision of the present paper. This study was funded by the National Natural Science Foundation of China (grant number 81272470).

Compliance with ethical standards

Conflicts of interest

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27. doi: 10.1146/annurev.med.53.082901.103929.CrossRefPubMedGoogle Scholar
  3. 3.
    Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer. 2011;2011:967419. doi: 10.4061/2011/967419.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, Corradini R, et al. High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol. 2015. doi: 10.3892/ijo.2015.3308.PubMedGoogle Scholar
  6. 6.
    Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, et al. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget. 2015. doi: 10.18632/oncotarget.6253.Google Scholar
  7. 7.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11(4):252–63. doi: 10.1038/nrm2868.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu W, Song N, Yao H, Zhao L, Liu H, Li G. miR-221 and miR-222 simultaneously target RECK and regulate growth and invasion of gastric cancer cells. Med Sci Monit. 2015;21:2718–25. doi: 10.12659/msm.894324.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao Y, Wang Y, Yang Y, Liu J, Song Y, Cao Y, et al. MicroRNA-222 controls human pancreatic cancer cell line Capan-2 proliferation by P57 targeting. Journal of Cancer. 2015;6(12):1230–5. doi: 10.7150/jca.12546.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47:e184. doi: 10.1038/emm.2015.68.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen WX, Hu Q, Qiu MT, Zhong SL, JJ X, Tang JH, et al. miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 2013;34(3):1361–70. doi: 10.1007/s13277-013-0750-y.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One. 2012;7(9):e44768. doi: 10.1371/journal.pone.0044768.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang C, Zhang J, Zhang A, Wang Y, Han L, You Y, et al. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol. 2010;37(6):1621–6.PubMedGoogle Scholar
  15. 15.
    Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531(1):8–14. doi: 10.1016/j.gene.2013.08.062.CrossRefPubMedGoogle Scholar
  16. 16.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367. doi: 10.1186/1471-2407-10-367.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang Y, Dai W, Chu X, Yang B, Zhao M, Sun Y. Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol Lett. 2013;35(12):2013–9. doi: 10.1007/s10529-013-1309-0.CrossRefPubMedGoogle Scholar
  18. 18.
    de Araujo WM, Robbs BK, Bastos LG, de Souza WF, Vidal FC, Viola JP, et al. PTEN overexpression cooperates with lithium to reduce the malignancy and to increase cell death by apoptosis via PI3K/Akt suppression in colorectal cancer cells. J Cell Biochem. 2016;117(2):458–69. doi: 10.1002/jcb.25294.CrossRefPubMedGoogle Scholar
  19. 19.
    Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994;78(1):67–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Hnit SS, Xie C, Yao M, Holst J, Bensoussan A, De Souza P, et al. p27(Kip1) signaling: transcriptional and post-translational regulation. Int J Biochem Cell Biol. 2015;68:9–14. doi: 10.1016/j.biocel.2015.08.005.CrossRefPubMedGoogle Scholar
  21. 21.
    He W, Wang X, Chen L, Guan XA. Crosstalk imbalance between p27(Kip1) and its interacting molecules enhances breast carcinogenesis. Cancer Biother Radiopharm. 2012;27(7):399–402. doi: 10.1089/cbr.2010.0802.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li LQ, Li XL, Wang L, WJ D, Guo R, Liang HH, et al. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol Biochem. 2012;30(3):631–41. doi: 10.1159/000341444.CrossRefPubMedGoogle Scholar
  23. 23.
    Sun C, Li N, Zhou B, Yang Z, Ding D, Weng D, et al. miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27. Oncol Lett. 2013;6(2):507–12. doi: 10.3892/ol.2013.1393.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang X, Xu Y, Zhu H, Ma C, Dai X, Qin C. Downregulated microRNA-222 is correlated with increased p27Kip1 expression in a double transgenic mouse model of Alzheimer’s disease. Mol Med Rep. 2015;12(5):7687–92. doi: 10.3892/mmr.2015.4339.PubMedGoogle Scholar
  25. 25.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Lage H, Aki-Sener E, Yalcin I. High antineoplastic activity of new heterocyclic compounds in cancer cells with resistance against classical DNA topoisomerase II-targeting drugs. Int J Cancer. 2006;119(1):213–20. doi: 10.1002/ijc.21792.CrossRefPubMedGoogle Scholar
  27. 27.
    Li Y, Zhao L, Shi B, Ma S, Xu Z, Ge Y, et al. Functions of miR-146a and miR-222 in tumor-associated macrophages in breast cancer. Scientific reports. 2015;5:18648. doi: 10.1038/srep18648.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zeng LP, Hu ZM, Li K, Xia K. miR-222 attenuates cisplatin-induced cell death by targeting the PPP2R2A/Akt/mTOR Axis in bladder cancer cells. J Cell Mol Med. 2016. doi: 10.1111/jcmm.12760.Google Scholar
  29. 29.
    Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther. 2014;21(7):290–6. doi: 10.1038/cgt.2014.29.CrossRefPubMedGoogle Scholar
  30. 30.
    Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30(9):1082–97. doi: 10.1038/onc.2010.487.CrossRefPubMedGoogle Scholar
  31. 31.
    Lau MT, Klausen C, Leung PCE. Cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via beta-catenin-Egr1-mediated PTEN expression. Oncogene. 2011;30(24):2753–66. doi: 10.1038/onc.2011.6.CrossRefPubMedGoogle Scholar
  32. 32.
    Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, et al. p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell. 2007;128(2):281–94. doi: 10.1016/j.cell.2006.11.049.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994;78(1):59–66.CrossRefPubMedGoogle Scholar
  34. 34.
    le Sage C, Nagel R, Agami R. Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle. 2014;6(22):2742–9. doi: 10.4161/cc.6.22.4900.CrossRefGoogle Scholar
  35. 35.
    Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52. doi: 10.1038/nm759.CrossRefPubMedGoogle Scholar
  36. 36.
    Fujita N, Sato S, Tsuruo T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 2003;278(49):49254–60. doi: 10.1074/jbc.M306614200.CrossRefPubMedGoogle Scholar
  37. 37.
    Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Herault A, Dubois T, et al. PI3K/AKT pathway activation in bladder carcinogenesis. International Journal of Cancer Journal International du Cancer. 2014;134(8):1776–84. doi: 10.1002/ijc.28518.CrossRefPubMedGoogle Scholar
  38. 38.
    Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One. 2014;9(4):e95240. doi: 10.1371/journal.pone.0095240.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A, et al. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med. 2013;210(5):951–68. doi: 10.1084/jem.20120950.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4(177):ra41. doi: 10.1126/scisignal.2001538.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Dan-dan Wang
    • 1
  • Su-jin Yang
    • 1
  • Xiu Chen
    • 1
  • Hong-Yu Shen
    • 1
  • Long-ji Luo
    • 1
  • Xiao-hui Zhang
    • 2
  • Shan-liang Zhong
    • 2
  • Jian-hua Zhao
    • 2
    Email author
  • Jin-hai Tang
    • 1
    Email author
  1. 1.Department of General SurgeryJiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjingChina
  2. 2.Center of Clinical Laboratory ScienceJiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjingChina

Personalised recommendations