Skip to main content

Advertisement

Log in

Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer

  • Review
  • Published:
Tumor Biology

Abstract

Breast cancer is a malignant disease to treat among female worldwide due to its high capability to metastasize and mutate. Epithelial-mesenchymal transition is one of the essential processes involved in the metastatic capacity of breast cancer. In the recent time, the studies demonstrate that microRNAs, a kind of small non-coding RNA molecules, could be served as negative regulators in breast cancer, regulating cell cycle, drug resistance, and the process of metastasis in cancer development. With the assistance of microRNA profiling, the study concentrating on the regulatory function of miRNAs in breast cancer could be investigated more effectively and efficiently. More recent studies demonstrate that miRNAs have an important role to play in the EMT process of breast cancer to modulate metastasis. This small essay is on the purpose of demonstrating the significance and detection of miRNAs in breast cancer EMT process as oncogenes and tumor suppress genes through miRNA profiling according to the reports mainly in the recent 5 years, providing the evidence of efficient target therapy and effective pro-diagnosis focusing on miRNAs expression of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Foundation, T.B.C.R. Breast cancer statistics. 2016; Available from: http://www.bcrfcure.org/breast-cancer-statistics.

  3. IARC. GLOBOCAN cancer fact sheets: Breast cancer. 2012; Available from: http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp.

  4. Reis-Filho JS et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49(1):10–21.

    Article  CAS  PubMed  Google Scholar 

  5. Khoshnaw SM et al. MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol. 2009;62(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez A et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10 A):1902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee Y et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hutvagner G et al. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8.

    Article  CAS  PubMed  Google Scholar 

  10. Silveri L et al. MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr Dev. 2006;46(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng WC et al. YM500v2: a small RNA sequencing (smRNA-seq) database for human cancer miRNome research. Nucleic Acids Res. 2015;43(Database issue):D862–7.

    Article  PubMed  Google Scholar 

  12. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iorio MV et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  14. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.

    Article  CAS  PubMed  Google Scholar 

  15. Sreekumar R et al. MicroRNA control of invasion and metastasis pathways. Front Genet. 2011;2:58.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaboli PJ et al. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.

    Article  CAS  PubMed  Google Scholar 

  18. Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 2009;69(19):7495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su Y et al. Small molecule with big role: MicroRNAs in cancer metastatic microenvironments. Cancer Lett. 2014;344(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  20. Lei R et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene. 2014;33(10):1287–96.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, A.X., et al.. MicroRNA-217 overexpression induces drug resistance and invasion of breast cancer cells by targeting PTEN signaling. Cell Biol Int. 2015.

  22. Yu Z et al. microRNA, cell cycle, and human breast cancer. Am J Pathol. 2010;176(3):1058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Q et al. MicroRNA-196a post-transcriptionally upregulates the UBE2C proto-oncogene and promotes cell proliferation in breast cancer. Oncol Rep. 2015;34(2):877–83.

    PubMed  Google Scholar 

  24. de Souza Rocha Simonini P et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70(22):9175–84.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao H et al. Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumour Biol. 2015;36(6):4763–71.

    Article  CAS  PubMed  Google Scholar 

  26. Jin YY, Andrade J, Wickstrom E. Non-specific blocking of miR-17-5p guide strand in triple negative breast cancer cells by amplifying passenger strand activity. PLoS One. 2015;10(12):e0142574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lu K et al. miRNA-24-3p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1. Oncol Rep. 2015;34(2):995–1002.

    PubMed  Google Scholar 

  28. Hu J et al. Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumour Biol. 2015;36(1):251–8.

    Article  CAS  PubMed  Google Scholar 

  29. Singh B et al. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis. 2013;34(5):1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu XH et al. MiR-300 regulate the malignancy of breast cancer by targeting p53. Int J Clin Exp Med. 2015;8(5):6957–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi W et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res. 2011;71(8):2926–37.

    Article  CAS  PubMed  Google Scholar 

  32. Ortego M et al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis. 1999;147(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  33. Hughes JP, Hatcher JP, Chessell IP. The role of P2X(7) in pain and inflammation. Purinergic Signal. 2007;3(1–2):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang S et al. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One. 2013;8(12):e80707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li Y et al. Effects of ARHI on breast cancer cell biological behavior regulated by microRNA-221. Tumour Biol. 2013;34(6):3545–54.

    Article  PubMed  CAS  Google Scholar 

  36. Nagpal N et al. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.

    Article  CAS  PubMed  Google Scholar 

  37. Majumder S, Jacob ST. Emerging role of microRNAs in drug-resistant breast cancer. Gene Expr. 2011;15(3):141–51.

    Article  PubMed  CAS  Google Scholar 

  38. Ahmad A et al. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer. 2015;15:540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhou, S., et al.. miR-27a regulates the sensitivity of breast cancer cells to cisplatin treatment via BAK-SMAC/DIABLO-XIAP axis. Tumour Biol. 2015.

  40. Huang X et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 2013;73(23):6972–86.

    Article  CAS  PubMed  Google Scholar 

  41. Hu Q et al. MicroRNA-452 contributes to the docetaxel resistance of breast cancer cells. Tumour Biol. 2014;35(7):6327–34.

    Article  CAS  PubMed  Google Scholar 

  42. Su, C.M., et al.. miR-520 h is crucial for DAPK2 regulation and breast cancer progression. Oncogene. 2015.

  43. Tekiner TA, Basaga H. Role of microRNA deregulation in breast cancer cell chemoresistance and stemness. Curr Med Chem. 2013;20(27):3358–69.

    Article  CAS  PubMed  Google Scholar 

  44. Leal JA, Lleonart ME. MicroRNAs and cancer stem cells: therapeutic approaches and future perspectives. Cancer Lett. 2013;338(1):174–83.

    Article  CAS  PubMed  Google Scholar 

  45. Nandy SB et al. MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the hippo signaling pathway. Oncotarget. 2015;6(19):17366–78.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Majumder M et al. COX-2 elevates oncogenic miR-526b in breast cancer by EP4 activation. Mol Cancer Res. 2015;13(6):1022–33.

    Article  CAS  PubMed  Google Scholar 

  47. De Cola A et al. miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis. 2015;6:e1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iorio MV et al. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer. 2008;44(18):2753–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jin, C., et al.. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol. 2015.

  50. Rasheed SA et al. MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Mol Cancer. 2015;14:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tsouko E et al. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis. 2015;36(9):1051–60.

    Article  CAS  PubMed  Google Scholar 

  52. Liu T et al. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/beta-catenin pathway. Oncotarget. 2015;6(39):41638–49.

    PubMed  PubMed Central  Google Scholar 

  53. Yang J et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene. 2014;33(23):3014–23.

    Article  CAS  PubMed  Google Scholar 

  54. Yang S et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32(36):4294–303.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, Q., et al.. MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/beta-catenin signaling pathway. Tumour Biol. 2015.

  56. Xue, J., et al.. MicroRNA-148a inhibits migration of breast cancer cells by targeting MMP-13. Tumour Biol, 2015.

  57. Li Y et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res. 2015;75(13):2674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xing F et al. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene. 2015;34(37):4890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang L et al. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 2011;71(3):645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel JB et al. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene. 2011;30(11):1290–301.

    Article  CAS  PubMed  Google Scholar 

  61. Lin Y et al. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 2015;5:9995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X et al. MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. Oncotarget. 2015;6(32):32737–47.

    PubMed  PubMed Central  Google Scholar 

  63. Li W et al. MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer. Tumour Biol. 2014;35(11):10897–904.

    Article  CAS  PubMed  Google Scholar 

  64. Tang F et al. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 2012;7(5):e35435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan Y et al. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int J Clin Exp Pathol. 2015;8(1):384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwickert A et al. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements. PLoS One. 2015;10(12):e0143993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chan SH et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33(36):4496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Phua YW et al. MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene. Breast Cancer Res. 2015;17:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cizeron-Clairac G et al. MiR-190b, the highest up-regulated miRNA in ERalpha-positive compared to ERalpha-negative breast tumors, a new biomarker in breast cancers? BMC Cancer. 2015;15:499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Le XF et al. Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One. 2012;7(7):e41170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song GQ, Zhao Y. MicroRNA-211, a direct negative regulator of CDC25B expression, inhibits triple-negative breast cancer cells’ growth and migration. Tumour Biol. 2015;36(7):5001–9.

    Article  CAS  PubMed  Google Scholar 

  72. Keklikoglou I et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene. 2012;31(37):4150–63.

    Article  CAS  PubMed  Google Scholar 

  73. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  74. Mobarra N et al. Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cell Dev Biol Anim. 2015;51(6):604–11.

    Article  CAS  PubMed  Google Scholar 

  75. Zheng T et al. CXCR4 3’UTR functions as a ceRNA in promoting metastasis, proliferation and survival of MCF-7 cells by regulating miR-146a activity. Eur J Cell Biol. 2015;94(10):458–69.

    Article  CAS  PubMed  Google Scholar 

  76. Kumaraswamy E et al. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene. 2015;34(33):4333–46.

    Article  CAS  PubMed  Google Scholar 

  77. Ren Y et al. microRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol Med Rep. 2014;10(1):315–21.

    CAS  PubMed  Google Scholar 

  78. Qin L et al. Special suppressive role of miR-29b in HER2-positive breast cancer cells by targeting Stat3. Am J Transl Res. 2015;7(5):878–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Achari C et al. Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer. 2014;14:538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang B, Wang H, Yang Z. MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One. 2012;7(10):e47053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y et al. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res. 2011;71(10):3552–62.

    Article  CAS  PubMed  Google Scholar 

  82. Long J et al. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol. 2015;36(11):8697–702.

    Article  CAS  PubMed  Google Scholar 

  83. Wang L et al. Downregulated miR-495 [corrected] inhibits the G1-S phase transition by targeting Bmi-1 in breast cancer. Medicine (Baltimore). 2015;94(21):e718.

    Article  CAS  Google Scholar 

  84. Liang H et al. miR-16 promotes the apoptosis of human cancer cells by targeting FEAT. BMC Cancer. 2015;15:448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zhang X et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010;70(18):7176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shukla K et al. MicroRNA-30c-2-3p negatively regulates NF-kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol. 2015;9(6):1106–19.

    Article  CAS  PubMed  Google Scholar 

  87. Hargraves, K.G., L. He, and G.L. Firestone. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog. 2015.

  88. Wang R et al. MiR-101 is involved in human breast carcinogenesis by targeting Stathmin1. PLoS One. 2012;7(10):e46173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aakula A et al. MicroRNA-135b regulates ERalpha, AR and HIF1AN and affects breast and prostate cancer cell growth. Mol Oncol. 2015;9(7):1287–300.

    Article  CAS  PubMed  Google Scholar 

  90. Eedunuri VK et al. miR-137 targets p160 steroid receptor coactivators SRC1, SRC2, and SRC3 and inhibits cell proliferation. Mol Endocrinol. 2015;29(8):1170–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao Y et al. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS One. 2012;7(6):e39102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hua W et al. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting topoisomerase II alpha. Biochem Biophys Res Commun. 2015;463(4):1077–83.

    Article  CAS  PubMed  Google Scholar 

  93. Abedi N et al. miR-141 as potential suppressor of beta-catenin in breast cancer. Tumour Biol. 2015;36(12):9895–901.

    Article  CAS  PubMed  Google Scholar 

  94. Ng EK et al. MicroRNA-143 targets DNA methyltransferases 3 A in colorectal cancer. Br J Cancer. 2009;101(4):699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang X et al. MicroRNA-204 targets JAK2 in breast cancer and induces cell apoptosis through the STAT3/BCl-2/survivin pathway. Int J Clin Exp Pathol. 2015;8(5):5017–25.

    PubMed  PubMed Central  Google Scholar 

  96. Ge X et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 2015;463(4):1115–21.

    Article  CAS  PubMed  Google Scholar 

  97. Yu F et al. MiR-506 over-expression inhibits proliferation and metastasis of breast cancer cells. Med Sci Monit. 2015;21:1687–92.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bai Y et al. MiR-615 inhibited cell proliferation and cell cycle of human breast cancer cells by suppressing of AKT2 expression. Int J Clin Exp Med. 2015;8(3):3801–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Endo Y et al. Immunohistochemical determination of the miR-1290 target arylamine N-acetyltransferase 1 (NAT1) as a prognostic biomarker in breast cancer. BMC Cancer. 2014;14:990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15(24):7479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Takahashi RU et al. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun. 2015;6:7318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Adams, B.D., et al.. miR-34a Silences c-SRC to attenuate tumor growth in triple negative breast cancer. Cancer Res. 2015.

  103. Liu X et al. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer. Oncotarget. 2015;6(24):20070–83.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yuan Y et al. MiR-133a is functionally involved in doxorubicin-resistance in breast cancer cells MCF-7 via its regulation of the expression of uncoupling protein 2. PLoS One. 2015;10(6):e0129843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kopp F et al. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 2012;7(11):e50469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. He X et al. MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumour Biol. 2015;36(3):2065–75.

    Article  CAS  PubMed  Google Scholar 

  107. Demirkan B. The roles of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in breast cancer bone metastasis: potential targets for prevention and treatment. J Clin Med. 2013;2(4):264–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  CAS  PubMed  Google Scholar 

  110. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  111. Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer. 2006;13(4):1033–67.

    Article  CAS  PubMed  Google Scholar 

  112. Drasin DJ, Robin TP, Ford HL. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res. 2011;13(6):226.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Berindan-Neagoe I, Calin GA. Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res. 2014;20(24):6247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. D’Amato NC, Howe EN. J.K. Richer, MicroRNA regulation of epithelial plasticity in cancer. Cancer Lett. 2013;341(1):46–55.

    Article  PubMed  CAS  Google Scholar 

  115. Tang J et al. Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers. Cancer Lett. 2016;371(2):301–13.

    Article  CAS  PubMed  Google Scholar 

  116. De Mattos-Arruda L et al. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015;6(35):37269–80.

    PubMed  PubMed Central  Google Scholar 

  117. Zhu J et al. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM Gene network. Cancer Res. 2015;75(8):1580–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen D et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1alpha-TWIST signaling axis in breast cancer. Oncotarget. 2015;6(32):32701–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang JG et al. Influence of miR-373 on the invasion and migration of breast cancer and the expression level of target genes TXNIP. J Biol Regul Homeost Agents. 2015;29(2):367–72.

    CAS  PubMed  Google Scholar 

  120. Shen Y et al. miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PLoS One. 2014;9(10):e109299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Vetter G et al. miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. 2010;29(31):4436–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kong X et al. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS One. 2012;7(8):e41523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, G., et al.. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Tumour Biol. 2015.

  124. Sigloch FC et al. miR-200c dampens cancer cell migration via regulation of protein kinase a subunits. Oncotarget. 2015;6(27):23874–89.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rhodes LV et al. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6(18):16638–52.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Shen PF et al. MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer. Prostate. 2014;74(7):756–67.

    Article  CAS  PubMed  Google Scholar 

  127. Liz, J. and M. Esteller. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 2015.

  128. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhou L et al. The roles of microRNAs in the regulation of tumor metastasis. Cell Biosci. 2015;5:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Plummer PN et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res. 2013;73(1):341–52.

    Article  CAS  PubMed  Google Scholar 

  131. Wang W, Zhang E, Lin C. MicroRNAs in tumor angiogenesis. Life Sci. 2015;136:28–35.

    Article  CAS  PubMed  Google Scholar 

  132. Yuryev A. Gene expression profiling for targeted cancer treatment. Expert Opin Drug Discovery. 2015;10(1):91–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NO.81573663 NSFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Chen.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Xiong, L., Tang, H. et al. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumor Biol. 37, 14463–14477 (2016). https://doi.org/10.1007/s13277-016-5334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5334-1

Keywords

Navigation