Advertisement

Tumor Biology

, Volume 37, Issue 11, pp 14501–14512 | Cite as

Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene

  • Shaleen Multani
  • Dhananjaya Saranath
Review

Abstract

Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5–10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case–control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

Keywords

Single nucleotide polymorphisms Oral cancer Genomic variants Risk Susceptibility Meta-analysis 

Notes

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2016_5322_MOESM1_ESM.docx (38 kb)
Supplementary Table S1 (DOCX 38 kb)
13277_2016_5322_MOESM2_ESM.docx (26 kb)
Supplementary Table S2 (DOCX 26 kb)

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang B, Zhang S, Yue K, Wang X-D. The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer. 2013;32:614–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Caballero M, Grau JJ, Blanch JL, Domingo-Domenech J, Auge JM, Jimenez W, et al. Serum vascular endothelial growth factor as a predictive factor in metronomic (weekly) paclitaxel treatment for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2007;133:1143–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Sasaki T, Moles DR, Imai Y, Speight PM. Clinico-pathological features of squamous cell carcinoma of the oral cavity in patients <40 years of age. J Oral Pathol Med. 2005;34:129–33. doi: 10.1111/j.1600-0714.2004.00291.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Kuriakose M, Sankaranarayanan M, Nair MK, Cherian T, Sugar AW, Scully C, et al. Comparison of oral squamous cell carcinoma in younger and older patients in India. Eur J Cancer B Oral Oncol. 1992;28B:113–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Petti S. Lifestyle risk factors for oral cancer. Oral Oncol. 2009;45:340–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Smith EM, Hoffman HT, Summersgill KS, Kirchner HL, Turek LP, Haugen TH. Human papillomavirus and risk of oral cancer. Laryngoscope. 1998;108:1098–103.CrossRefPubMedGoogle Scholar
  8. 8.
    Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004;19:251–62.CrossRefPubMedGoogle Scholar
  9. 9.
    D' Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 2015;51:12:1061-68Google Scholar
  10. 10.
    Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol. 2012;8:1407–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rai R, Kulkarni V, Saranath D. Genome wide instability scanning in chewing-tobacco associated oral cancer using inter simple sequence repeat PCR. Oral Oncol. 2004;40:1033–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Bhatnagar R, Dabholkar J, Saranath D. Genome-wide disease association study in chewing tobacco associated oral cancers. Oral Oncol. 2012;48:831–5.CrossRefPubMedGoogle Scholar
  13. 13.
    The International HapMap Project. 2003;426:789–96.Google Scholar
  14. 14.
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Chien MH, Yang JS, Chu YH, Lin CH, Wei LH, Yang SF, et al. Impacts of CA9 gene polymorphisms and environmental factors on oral-cancer susceptibility and clinicopathologic characteristics in Taiwan. PLoS One. 2012;7:5–12.Google Scholar
  16. 16.
    Ignatova Z, Martínez-Pérez I, Zimmermann K-H. DNA computing models. Springer Science & Business Media. 2008.Google Scholar
  17. 17.
    Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, et al. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope. 2010;120:2417–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Murali A, Nalinakumari KR, Thomas S, Kannan S. Association of single nucleotide polymorphisms in cell cycle regulatory genes with oral cancer susceptibility. Br J Oral Maxillofac Surg. 2014;52:652–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Gaur P, Mittal M, Mohanti BK, Das SN. Functional genetic variants of TGF-β1 and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Oncol. 2011;47:1117–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Bau DT, Tsai CW, Lin CC, Tsai RY, Tsai MH. Association of alpha B-crystallin genotypes with oral cancer susceptibility, survival, and recurrence in Taiwan. PLoS One. 2011;6:3–7.CrossRefGoogle Scholar
  21. 21.
    Ma L, Chen J, Song X, Yuan H, Wang Y, Wu Y, et al. Evidence that the genetic polymorphism rs1412115 on chromosome 10 is associated with risk for oral squamous cell carcinoma. Gene. 2015;560:137–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Weng C-J, Chen M-K, Lin C-W, Chung T-T, Yang S-F. Single nucleotide polymorphisms and haplotypes of MMP-14 are associated with the risk and pathological development of oral cancer. Ann Surg Oncol. 2012;19(Suppl 3):S319–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Li L. Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma. Exp Ther Med. 2013:171–8.Google Scholar
  24. 24.
    Chung YT, Hsieh LL, Chen IH, Liao CT, Liou SH, Chi CW, et al. Sulfotransferase 1A1 haplotypes associated with oral squamous cell carcinoma susceptibility in male Taiwanese. Carcinogenesis. 2009;30:286–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Chou Y-E, Hsieh M-J, Hsin C-H, Chiang W-L, Lai Y-C, Lee Y-H, et al. CD44 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. PLoS One. 2014;9:e93692.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lin CW, Chuang CY, Tang CH, Chang JL, Lee LM, Lee WJ, et al. Combined effects of ICAM-1 single-nucleotide polymorphisms and environmental carcinogens on oral cancer susceptibility and clinicopathologic development. PLoS One. 2013;8:1–8.Google Scholar
  27. 27.
    Gaur P, Mittal M, Mohanti BK, Das SN. Functional variants of IL4 and IL6 genes and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Dis. 2011;17:720–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Li N, Zhang C, Chen Z, Bai L, Nie M, Zhou B, et al. Interleukin 17A and interleukin 17F polymorphisms are associated with oral squamous cell carcinoma susceptibility in a Chinese population. J Oral Maxillofac Surg. 2015;73:267–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Chien M-H, Hsin C-H, Chou LS-S, Chung T-T, Lin C-H, Weng M-S, et al. Interleukin-23 receptor polymorphism as a risk factor for oral cancer susceptibility. Head Neck. 2012;34:551–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Lakhanpal M, Yadav DS, Devi TR, Singh LC, Singh KJ, Latha SP, et al. Association of interleukin-1β -511 C/T polymorphism with tobacco-associated cancer in Northeast India: a study on oral and gastric cancer. Cancer Genet. 2014;207:1–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Singh PK, Ahmad MK, Kumar V, Hussain SR, Gupta R, Jain A, et al. Effects of interleukin-18 promoter (C607A and G137C) gene polymorphisms and their association with oral squamous cell carcinoma (OSCC) in northern India. Tumor Biol. 2014;35:12275–84.CrossRefGoogle Scholar
  32. 32.
    Su S, Chien M, Lin C, Chen M, Yang S. RAGE gene polymorphism and environmental factor in the risk of oral cancer. J Dent Res. 2015;94:403–11.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Teng Y-H, Liu T-H, Tseng H-C, Chung T-T, Yeh C-M, Li Y-C, et al. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck. 2009;31:1282–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Multani S, Pradhan S, Saranath D. Gene polymorphisms and oral cancer risk in tobacco habitués. Tumour Biol. 2015.Google Scholar
  35. 35.
    Jha R, Gaur P, Sharma SC, Das SN. Single nucleotide polymorphism in hMLH1 promoter and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Gene. 2013;526:223–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang Y, Lin L, Xu H, Li T, Zhou Y, Dan H, et al. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han. Population. 2015:45–50.Google Scholar
  37. 37.
    Weng CJ, Hsieh YH, Chen MK, Tsai CM, Lin CW, Yang SF. Survivin SNP-carcinogen interactions in oral cancer. J Dent Res. 2012;91:358–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Al-Hadyan KS, Al-Harbi NM, Al-Qahtani SS, Alsbeih GA. Involvement of single-nucleotide polymorphisms in predisposition to head and neck cancer in Saudi Arabia. Genet Test Mol Biomarkers. 2012;16:95–101.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Andrade Filho PA, Letra A, Cramer A, Prasad JL, Garlet GP, Vieira AR, et al. Insights from studies with oral cleft genes suggest associations between WNT-pathway genes and risk of oral cancer. J Dent Res. 2011;90:740–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hsu H, Yang Y, Shieh T, Chen C. TGF-β1 and IL-10 single nucleotide polymorphisms as risk factors for oral cancer in Taiwanese. Kaohsiung J Med Sci. 2014:1–7.Google Scholar
  41. 41.
    Anantharaman D, Chaubal PM, Bhisey RA, Mahimkar MB. Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. 2007;28:1455–62.Google Scholar
  42. 42.
    Anantharaman D, Samant TA, Sen S, Mahimkar MB. Polymorphisms in tobacco metabolism and DNA repair genes modulate oral precancer and cancer risk. Oral Oncol. 2011;47:866–72.CrossRefPubMedGoogle Scholar
  43. 43.
    Shukla D, Kale AD, Hallikerimath S, Vivekanandhan S, Venkatakanthaiah Y. Genetic polymorphism of drug metabolizing enzymes (GSTM1 and CYP1A1) as risk factors for oral premalignant lesions and oral cancer. Biomed Pap. 2012;156:253–9.CrossRefGoogle Scholar
  44. 44.
    Balaji L, Singh KB, Bhaskar LVKS. CYP1A1 genotypes and haplotypes and risk of oral cancer: a case-control study in South Indians. Genet Mol Biol. 2012;35:407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Singh R, Haridas N, Shah F, Patel J, Shukla S, Patel P. Gene polymorphisms, tobacco exposure and oral cancer susceptibility: a study from Gujarat, West India. Oral Dis. 2014;20:84–93.CrossRefPubMedGoogle Scholar
  46. 46.
    Atoh TK, Aneko SK, Ohshi KK, Unaka MM, Itagawa KK, Unugita NK, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and oral cavity. Cancer. 1999;609:606–9.Google Scholar
  47. 47.
    Sato M, Sato T, Izumo T. Genetic polymorphism of drug-metabolizing enzymes and susceptibility to oral. Cancer. 1999;20:1927–31.Google Scholar
  48. 48.
    Tanimoto K, Hayashi S, Yoshiga K, Ichikawa T. Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol. 1999;35:191–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Sato M, Sato T, Izumo T, Amagasa T. Genetically high susceptibility to oral squamous cell carcinoma in terms of combined genotyping of CYP1A1 and GSTM1 genes. Oral Oncol. 2000;36:267–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Amtha R, Ching CS, Zain R, Razak IA, Basuki B, Roeslan BO, et al. GSTM1, GSTT1 and CYP1A1 polymorphisms and risk of oral cancer: a case-control study in Jakarta, Indonesia. 2009;10:21–6.Google Scholar
  51. 51.
    Kao S, Wu C, Lin S. Genetic polymorphism of cytochrome P4501A1 and susceptibility to oral squamous cell carcinoma and oral precancer lesions associated with smoking/betel use. 2002;505–11.Google Scholar
  52. 52.
    Xie H, Hou L, Shields PG, Winn DM, Gridley G, Bravo-otero E, et al. Metabolic polymorphisms, smoking, and oral cancer in Puerto Rico. 2004;14:315–20.Google Scholar
  53. 53.
    Marques CFS, Koifman S, Koifman RJ, Boffetta P, Brennan P, Hatagima A. Influence of CYP1A1, CYP2E1, GSTM3 and NAT2 genetic polymorphisms in oral cancer susceptibility: results from a case-control study in Rio de Janeiro. Oral Oncol. 2006;42:632–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Buch SC, Notani PN, Bhisey RA. Polymorphism at GSTM1, GSTM3 and GSTT1 gene loci and susceptibility to oral cancer in an Indian population at GSTM1, GSTM3 and GSTT1 gene loci on oral cancer tobacco, bidi or cigarette. DNA extracted from white blood cells of 297 cancer patients and 4. 2002;23:803–7.Google Scholar
  55. 55.
    Sikdar N, Paul RR, Roy B. Glutathione S-transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109:95–101.CrossRefPubMedGoogle Scholar
  56. 56.
    Masood N, Kayani MA, Malik FA, Mahjabeen I, Baig RM, Faryal R. Genetic variation in carcinogen metabolizing genes associated with oral cancer in pakistani population. Asian Pac J Cancer Prev. 2011;12:491–5.PubMedGoogle Scholar
  57. 57.
    Sailasree R, Nalinakumari KR, Sebastian P, Kannan S. Influence of methylenetetrahydrofolate reductase polymorphisms in oral cancer patients. J Oral Pathol Med. 2011;40:61–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Addala L, Kumar, CHK, Reddy N M, Kumar Reddy TP, Md S. Association of the C677T polymorphism in the MTHFR gene with risk of oral squamous cell carcinoma in South Indian population. Am J Cancer Res Clin Oncol. 2013;1–11.Google Scholar
  59. 59.
    Tsai C, Hsu C, Tsai M, Tsou Y, Hua C. Methylenetetrahydrofolate reductase (MTHFR) genotype, smoking habit, metastasis and oral cancer in Taiwan. 2011;2400:2395–9.Google Scholar
  60. 60.
    Weinstein SJ, Gridley G, Harty LC, Diehl SR, Brown LM, Winn DM, et al. Folate intake, serum homocysteine and methylenetetrahydrofolate reductase (MTHFR) C677T genotype are not associated with oral cancer risk in Puerto Rico. 2002;762–7.Google Scholar
  61. 61.
    Tsai C, Chang W, Lin K, Shih L, Tsai M. Significant association of interleukin-10 genotypes and oral cancer susceptibility in Taiwan. 2014;3738:3731–7.Google Scholar
  62. 62.
    Yao J-G, Gao L-B, Liu Y-G, Li J, Pang G-F. Genetic variation in interleukin-10 gene and risk of oral cancer. Clin Chim Acta. 2008;388:84–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Mittal M, Kapoor V, Mohanti BK, Das SN. Functional variants of COX-2 and risk of tobacco-related oral squamous cell carcinoma in high-risk Asian Indians. Oral Oncol. 2010;46:622–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Lakshmi A, Muralidhar S, Kumar CK, Kumar AP, Chakravarthy PK, Anjaneyulu V, et al. Cyclooxygenase-2-765G>C functional promoter polymorphism and its association with oral squamous cell carcinoma. J Investig Clin Dent. 2012;3:182–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Lin YC, Huang HI, Wang LH, Tsai CC, Lung O, Dai CY, et al. Polymorphisms of COX-2 -765G > C and p53 codon 72 and risks of oral squamous cell carcinoma in a Taiwan population. Oral Oncol. 2008;44:798–804.CrossRefPubMedGoogle Scholar
  66. 66.
    Pu X, Lippman SM, Yang H, Lee JJ, Wu X. Cyclooxygenase-2 gene polymorphisms reduce the risk of oral premalignant lesions. Cancer. 2009;115:1498–506.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chen M-K, Chiou H-L, S-C S, Chung T-T, Tseng H-C, Tsai H-T, et al. The association between hypoxia inducible factor-1α gene polymorphisms and increased susceptibility to oral cancer. Oral Oncol. 2009;45:e222–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Shieh T-M, Chang K-W, H-F T, Shih Y-H, Ko S-Y, Chen Y-C, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol. 2010;46:e47–53.CrossRefPubMedGoogle Scholar
  69. 69.
    Yen C-Y, Liu S-Y, Chen C-H, Tseng H-F, Chuang L-Y, Yang C-H, et al. Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. J Oral Pathol Med. 2008;37:271–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Tsai C, Chang W, Liu J, Tsai M, Lin C, Bau D. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan. 2014;2956:2951–6.Google Scholar
  71. 71.
    Kietthubthew S, Sriplung H, WW A, Ishida T. Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health. 2006;209:21–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Bisarro M, Losi-guembarovski R, Maria E, Fonseca DS, Morita MC, Henrique G, et al. Allelic variants of XRCC1 and XRCC3 repair genes and susceptibility of oral cancer in Brazilian patients. 2013;180–5.Google Scholar
  73. 73.
    Song N. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001;22:11–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Rebbeck T. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomark Prev. 1997;6:733–43.Google Scholar
  75. 75.
    Curtin K. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomark Prev. 2004;13:285–92.CrossRefGoogle Scholar
  76. 76.
    Couper K, Blount D, Riley E. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.PubMedGoogle Scholar
  78. 78.
    Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Nasir Khan K, Masferrer J, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12.CrossRefPubMedGoogle Scholar
  80. 80.
    Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells service XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. 1999;2633–8.Google Scholar
  81. 81.
    Martinez-Marignac VL, Rodrigue A, Davidson D, Couillard M, Al-Moustafa A-E, Abramovitz M, et al. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One. 2011;6:e16394.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Juwle A, Saranath D. BRCA1/BRCA2 gene mutations/SNPs and BRCA1 haplotypes in early-onset breast cancer patients of Indian ethnicity. Med Oncol. 2012;29:3272–81.CrossRefPubMedGoogle Scholar
  83. 83.
    Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376:245–51.CrossRefPubMedGoogle Scholar
  84. 84.
    Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.CrossRefPubMedGoogle Scholar
  85. 85.
    Wang Y, Lin Y, Hung H, Tien W, Shieh T. Polymorphisms in kallikrein7 and 10 genes and oral cancer risks in Taiwan betel quid chewers and smokers. 2013;824–32.Google Scholar
  86. 86.
    Majumder M, Ghosh S, Roy B. Association between polymorphisms at N-acetyltransferase 1 (NAT1) & risk of oral leukoplakia & cancer. Indian J Med Res. 2012;136:605–13.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Huang SF, Chen IH, Liao CT, Wang HM, Liou SH, Hsieh LL. Combined effects of MDM2 SNP 309 and p53 mutation on oral squamous cell carcinomas associated with areca quid chewing. Oral Oncol. 2009;45:16–22.CrossRefPubMedGoogle Scholar
  88. 88.
    Tu H, Chen H, Kao S, Lin S. MDM2 SNP 309 and p 53 codon 72 polymorphisms are associated with the outcome of oral carcinoma patients receiving postoperative irradiation. 2008;87:243–52.Google Scholar
  89. 89.
    Misra C, Majumder M, Bajaj S, Ghosh S, Roy B. Polymorphisms at p53, p73, and MDM2 loci modulate the risk of tobacco associated leukoplakia and oral. Cancer. 2009;800:790–800.Google Scholar
  90. 90.
    Hamid S, Yang Y, Ng K, Peng L, Mazlipah S, Binti R, et al. MDM2 SNP309 does not confer an increased risk to oral squamous cell carcinoma but may modulate the age of disease onset. Oral Oncol. 2009;45:496–500.CrossRefPubMedGoogle Scholar
  91. 91.
    Balaji L, Singh B, Bhaskar LVKS. An unlikely role for the NAT2 genotypes and haplotypes in the oral cancer of South Indians. Arch Oral Biol. 2011;57:513–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Tsai M-H, Chen W-C, Tsai C-H, Hang L-W, Tsai F-J. Interleukin-4 gene, but not the interleukin-1 beta gene polymorphism, is associated with oral cancer. J Clin Lab Anal. 2005;19:93–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Vairaktaris E, Yannopoulos A, Vassiliou S, Serefoglou Z, Vylliotis A, Nkenke E, et al. Strong association of interleukin-4 (-590 C/T) polymorphism with increased risk for oral squamous cell carcinoma in Europeans. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2007;104:796–802.CrossRefGoogle Scholar
  94. 94.
    Karimi MY, Kapoor V, Sharma SC, Das SN. Genetic polymorphisms in FAS (CD95) and FAS ligand (CD178) promoters and risk of tobacco-related oral carcinoma: gene-gene interactions in high-risk Indians. Cancer Investig. 2013;31:1–6.CrossRefGoogle Scholar
  95. 95.
    Wang LH, Ting SC, Chen CH, Tsai CC, Lung O, Liu TC, et al. Polymorphisms in the apoptosis-associated genes FAS and FASL and risk of oral cancer and malignant potential of oral premalignant lesions in a Taiwanese population. J Oral Pathol Med. 2010;39:155–61.CrossRefPubMedGoogle Scholar
  96. 96.
    Zhou C, Zhou Y, Li J, Zhang Y, Jiang L, Zeng X, et al. The Arg194Trp polymorphism in the X-ray repair cross-complementing group 1 gene as a potential risk factor of oral cancer: a meta-analysis. Tohoku J Exp Med. 2009;219(1):43–51.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Biological Sciences, Sunandan Divatia School of ScienceNMIMS (Deemed-to-be) UniversityMumbaiIndia

Personalised recommendations