Tumor Biology

, Volume 37, Issue 11, pp 14637–14651 | Cite as

Bone marrow-derived mesenchymal stem cells increase drug resistance in CD133-expressing gastric cancer cells by regulating the PI3K/AKT pathway

  • Nuo Ji
  • Ji-Wei Yu
  • Xiao-Chun Ni
  • Ju-Gang Wu
  • Shou-Lian Wang
  • Bo-Jian Jiang
Original Article


Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited to primary tumours to compose the tumour microenvironment. In various cancers, CD133-positive cells have been shown to possess cancer stem cell properties that confer chemoresistance. This study aimed to investigate the role of BM-MSCs in the anti-tumour drug resistance of CD133-expressing gastric cancer cells and explore the underlying mechanisms that governing this role. We found that CD133+ gastric cancer cells displayed more resistance to chemotherapeutics than CD133 cells. In addition, BM-MSCs increased the anti-apoptotic abilities and chemoresistance of CD133+ cells via upregulation of Bcl-2 and downregulation of BAX. Mechanistically, BM-MSCs triggered activation of the PI3K/Akt signalling cascade in CD133+ cells. Blocking the PI3K/Akt pathway inhibited the promotion of chemoresistance. Furthermore, BM-MSCs enhanced the drug resistance of CD133-overexpressing cells in vitro and in vivo, but not that of CD133-knockdown cells, which demonstrated the contribution of CD133 to this process. In conclusion, we demonstrated that BM-MSCs increased the anti-apoptotic abilities and drug resistance of CD133-expressing cells via activation of the PI3K/Akt pathway following Bcl-2 upregulation and BAX downregulation, in which CD133 played a significant role. Targeting this route may help improve the efficacy of chemotherapy in gastric cancer.


Mesenchymal stem cells Cancer stem cells CD133 Drug resistance Apoptosis Gastric cancer 



Bone marrow-derived mesenchymal stem cells


Cancer stem cells


Gastric cancer


Gastric cancer cells


Magnetic cell sorting


Half-maximal inhibitory concentration




Real-time quantitative PCR.



This research was supported by grants from the Health Bureau of Shanghai (grant no. 20134393 for BJJ) and the Research Funds of Shanghai Jiao Tong University School of Medicine (grant no. 13XJ10028 for BJJ). All authors appreciate the flow cytometry technical support assistance of Dr. Zhu-ying Guo. All authors read and approved the final manuscript for publication.

Authors’ contributions

NJ contributed to the study design, intellectual content, literature research, experimental studies, data acquisition, data analysis, statistical analysis and manuscript preparation. JWY, JGW, XCN and SLW contributed to the literature research, study design and data analysis. NJ, JWY, JGW, SLW assisted with the pathological and immunohistochemical analyses. JGW asisted with the RT-PCR analysis. XCN, SLW assisted with technique support in the laboratory. BJJ contributed to grant acquisition for this study. BJJ ensured the integrity of the entire study, study concepts, study design and manuscript review. All authors read and approved the final manuscript for publication.

Compliance with ethical standards

Ethics approval

Animal studies were approved by the animal ethics committee of our hospital and all animal procedures were performed in accordance with institutional guidelines.

In our study, all experimental procedures were conducted in accordance with our institutional guidelines for the care and use of laboratory animals and conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All animal experiments were performed according to protocols that were approved by our animal care and use committee.

Conflicts of interests

The authors declare that they have no competing interests.

Supplementary material

13277_2016_5319_Fig9_ESM.gif (11 kb)

(GIF 10 kb)

13277_2016_5319_MOESM1_ESM.tif (34 kb)
High resolution image (TIFF 34 kb)


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29(33):4387–93.CrossRefPubMedGoogle Scholar
  4. 4.
    Nishikawa K, Fujitani K, Inagaki H, Akamaru Y, Tokunaga S, Takagi M, et al. Randomised phase III trial of second-line irinotecan plus cisplatin versus irinotecan alone in patients with advanced gastric cancer refractory to S-1 monotherapy: TRICS trial. Eur J Cancer. 2015;51(7):808–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Mackenzie IC. Cancer stem cells. Ann Oncol. 2008;19(Suppl 5):v40–3.CrossRefPubMedGoogle Scholar
  6. 6.
    O’Brien CA, Pollett A, Gallinger S, Dick JEA. Human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMedGoogle Scholar
  10. 10.
    Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8(6):723–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118(6):2111–20.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106(38):16281–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ma S, Lee TK, Zheng BJ, Chan KW, XY G. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27(12):1749–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu Y, Yu J, Wang S, Lu R, Wu J, Jiang B. Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells. Oncol Rep. 2014;32(6):2437–44.PubMedGoogle Scholar
  17. 17.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999.Google Scholar
  18. 18.
    Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004;287(6):H2670–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013.Google Scholar
  21. 21.
    Kumar S, Chanda D, Ponnazhagan S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther. 2008;15(10):711–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Harati MD, Amiri F, Jaleh F, Mehdipour A, Harati MD, Molaee S, et al. Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(8):6011–8.CrossRefGoogle Scholar
  23. 23.
    De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut. 2013;62(4):550–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2014;33(21):2768–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Saglam O, Unal ZS, Subasi C, Ulukaya E, Karaoz E. IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(7):5667–77.CrossRefGoogle Scholar
  26. 26.
    Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle (Georgetown, Tex). 2015;14(15):2473–83.CrossRefGoogle Scholar
  28. 28.
    Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9(9):665–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, et al. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol. 1996;148(5):1567–76.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen DH, Yu JW, Wu JG, Wang SL, Jiang BJ. Significances of contactin-1 expression in human gastric cancer and knockdown of contactin-1 expression inhibits invasion and metastasis of MKN45 gastric cancer cells. J Cancer Res Clin Oncol. 2015;141(12):2109–20.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  32. 32.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhi Y, Mou Z, Chen J, He Y, Dong H, Fu X, et al. B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS One. 2015;10(8):e0135528.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sowa T, Menju T, Sonobe M, Nakanishi T, Shikuma K, Imamura N, et al. Association between epithelial-mesenchymal transition and cancer stemness and their effect on the prognosis of lung adenocarcinoma. Cancer Med. 2015;4(12):1853–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee SO, Yang X, Duan S, Tsai Y, Strojny LR, Keng P, et al. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget. 2016;7(6):6626–38.PubMedGoogle Scholar
  37. 37.
    Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM, et al. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget. 2015;6(10):8313–22.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tan S, Chen JS, Sun LJ, Yao HR. Selective enrichment of hepatocellular cancer stem cells by chemotherapy. J Int Med Res. 2009;37(4):1046–56.CrossRefPubMedGoogle Scholar
  39. 39.
    JW Y, Zhang P, JG W, SH W, Li XQ, Wang ST, et al. Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. J Exp Clin Cancer Res. 2010.Google Scholar
  40. 40.
    Wu JG, Yu JW, Lu RQ, Wang SL, Ni XC, Zheng LH, et al. Preliminary study on the expression and the clinical significance of CD133 in peripheral blood of patients with gastric adenocarcinoma. ISRN Gastroenterol. 2014;2014:245329.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Quante M, SP T, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Souza LE, Almeida DC, Yaochite JN, Covas DT, Fontes AM. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b myeloid cells to the lungs and facilitates B16-F10 melanoma colonization. Experimental cell research. 2015.Google Scholar
  43. 43.
    Bergfeld SA, Blavier L, DeClerck YA. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther. 2014;13(4):962–75.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vianello F, Villanova F, Tisato V, Lymperi S, Ho KK, Gomes AR, et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95(7):1081–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen P, Huang H, Wu J, Lu R, Wu Y, Jiang X, et al. Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Mol Carcinog. 2015;54(12):1678–85.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang J, Yu J, Wu J, Wang S, Chen D, Yang F, et al. Experimental study of human bone marrow mesenchymal stem cells on regulating the biological characteristics of gastric cancer cells. Zhonghua Wei Chang Wai Ke Za Zhi. 2015;18(2):159–65.PubMedGoogle Scholar
  47. 47.
    Houthuijzen JM, Daenen LG, Roodhart JM, Voest EE. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012;106(12):1901–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells (Dayton, Ohio). 2007;25(9):2363–70.CrossRefGoogle Scholar
  50. 50.
    Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123(4):1542–55.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sartelet H, Imbriglio T, Nyalendo C, Haddad E, Annabi B, Duval M, et al. CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology. 2012;60(7):1144–55.CrossRefPubMedGoogle Scholar
  52. 52.
    Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013;110(17):6829–34.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shimozato O, Waraya M, Nakashima K, Souda H, Takiguchi N, Yamamoto H, et al. Receptor-type protein tyrosine phosphatase kappa directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene. 2015;34(15):1949–60.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Nuo Ji
    • 1
  • Ji-Wei Yu
    • 1
  • Xiao-Chun Ni
    • 1
  • Ju-Gang Wu
    • 1
  • Shou-Lian Wang
    • 1
  • Bo-Jian Jiang
    • 1
  1. 1.Department of General Surgery, Shanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations