Tumor Biology

, Volume 37, Issue 10, pp 13581–13593 | Cite as

Tumor biology of non-metastatic stages of clear cell renal cell carcinoma; overexpression of stearoyl desaturase-1, EPO/EPO-R system and hypoxia-related proteins

  • Tania Romina Stoyanoff
  • Juan Pablo Rodríguez
  • Juan Santiago Todaro
  • Joaquín Diego Espada
  • Juan Pablo Melana Colavita
  • Nora Cristina Brandan
  • Adriana Mónica Torres
  • María Victoria Aguirre
Original Article


Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinomas. There is great interest to know the molecular basis of the tumor biology of ccRCC that might contribute to a better understanding of the aggressive biological behavior of this cancer and to identify early biomarkers of disease. This study describes the relationship among proliferation, survival, and apoptosis with the expression of key molecules related to tumoral hypoxia (hypoxia-inducible factor (HIF)-1α, erythropoietin (EPO), vascular endothelial growth factor (VEGF)), their receptors (EPO-R, VEGFR-2), and stearoyl desaturase-1 (SCD-1) in early stages of ccRCC. Tissue samples were obtained at the Urology Unit of the J.R. Vidal Hospital (Corrientes, Argentina), from patients who underwent radical nephrectomy for renal cancer between 2011 and 2014. Four experimental groups according to pathological stage and nuclear grade were organized: T1G1 (n = 6), T2G1 (n = 4), T1G2 (n = 7), and T2G2 (n = 7). The expression of HIF-1α, EPO, EPO-R, VEGF, VEGFR-2, Bcl-xL, and SCD-1 were evaluated by immunohistochemistry, Western blotting, and/or RT-PCR. Apoptosis was assessed by the TUNEL in situ assay, and tumor proliferation was determined by Ki-67 immunohistochemistry. Data revealed that HIF-1α, EPO, EPO-R, VEGF, and VEGF-R2 were overexpressed in most samples. The T1G1 group showed the highest EPO levels, approximately 200 % compared with distal renal tissue. Bcl-xL overexpression was concomitant with the enhancement of proliferative indexes. SCD-1 expression increased with the tumor size and nuclear grade. Moreover, the direct correlations observed between SCD-1/HIF-1α and SCD-1/Ki-67 increments suggest a link among these molecules, which would determine tumor progression in early stages of ccRCC. Our results demonstrate the relationship among proliferation, survival, and apoptosis with the expression of key molecules related to tumoral hypoxia (HIF-1α, EPO, VEGF), their receptors (EPO-R, VEGFR-2), and SCD-1 in early stages of ccRCC.


Clear cell renal cell carcinoma (ccRCC) Erythropoietin (EPO) EPO receptor (EPO-R) Apoptosis Stearoyl desaturase-1 (SCD-1) 



The authors thank to Dr. M.I. Delfino and the other pathologists of the Anatomopathology Unit of the J.R. Vidal Hospital of Corrientes (Argentina). This study was supported by the Grants: 2011-0212 PICTO UNNE (FONCyT- UNNE), PI 17/I008; PI 17/I010 and PI I004-2014 (SEGCyT, UNNE). Juan Pablo Melana Colavita is the recipient of a doctoral fellowship of CONICET-UNNE and Tania Romina Stoyanoff is the recipient of a postdoctoral fellowship of CONICET-UNNE.


  1. 1.
    Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med [Internet]. 2005;353:2477–90 .Available from: CrossRefGoogle Scholar
  2. 2.
    Phuoc NB, Ehara H, Gotoh T, Nakano M, Yokoi S, Deguchi T, et al. Immunohistochemical analysis with multiple antibodies in search of prognostic markers for clear cell renal cell carcinoma. Urology [Internet]. 2007;69:843–8 .Available from: CrossRefGoogle Scholar
  3. 3.
    Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear-cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther [Internet]. 2014;8:218–28 .Available from: Google Scholar
  4. 4.
    Singer EA, Gupta GN, Marchalik D, Srinivasan R. Evolving therapeutic targets in renal cell carcinoma. Curr Opin Oncol [Internet]. 2013;25:273–80 .Available from: Google Scholar
  5. 5.
    Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, et al. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One [Internet]. 2010;5:e10696 .Available from: CrossRefGoogle Scholar
  6. 6.
    Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD, et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res [Internet]. 2007;13:7388–93 .Available from: CrossRefGoogle Scholar
  7. 7.
    Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol [Internet]. 2005;25:5675–86 .Available from: CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Wang H, Zhang J, Lv J, Huang Y. Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci. [Internet]. 2013;104:416–22 .Available from: CrossRefGoogle Scholar
  9. 9.
    Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab [Internet]. 2014;2:3 .Available from: CrossRefGoogle Scholar
  10. 10.
    Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev [Internet]. 1998;8:588–94 .Available from: CrossRefGoogle Scholar
  11. 11.
    Hardee ME, Arcasoy MO, Blackwell KL, Kirkpatrick JP, Dewhirst MW. Erythropoietin biology in cancer. Clin Cancer Res [Internet]. 2006;12:332–9 .Available from: CrossRefGoogle Scholar
  12. 12.
    Lai SY, Grandis JR. Understanding the presence and function of erythropoietin receptors on cancer cells. J Clin Oncol [Internet]. 2006;24:4675–6 .Available from: CrossRefGoogle Scholar
  13. 13.
    Papworth K, Bergh A, Grankvist K, Ljungberg B, Rasmuson T. Expression of erythropoietin and its receptor in human renal cell carcinoma. Tumour Biol [Internet]. 2009;30:86–92 .Available from: CrossRefGoogle Scholar
  14. 14.
    Westenfelder C, Baranowski RL. Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int [Internet]. 2000;58:647–57 .Available from: CrossRefGoogle Scholar
  15. 15.
    Gong K, Zhang N, Zhang Z, Na Y. Coexpression of erythopoietin and erythopoietin receptor in sporadic clear cell renal cell carcinoma. Cancer Biol Ther [Internet]. 2006;5:582–5 [cited 2016 Jan 15]. Available from: Scholar
  16. 16.
    Iwata T, Miyata Y, Kanda S, Nishikido M, Hayashi T, Sakai H, et al. Lymphangiogenesis and angiogenesis in conventional renal cell carcinoma: association with vascular endothelial growth factors A to D immunohistochemistry. Urology [Internet]. 2008;71:749–54 .Available from: CrossRefGoogle Scholar
  17. 17.
    Dorevic G, Matusan-Ilijas K, Babarovic E, Hadzisejdic I, Grahovac M, Grahovac B, et al. Hypoxia inducible factor-1alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res [Internet]. 2009;28:40 .Available from: CrossRefGoogle Scholar
  18. 18.
    Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J [Internet]. 2012;279:2610–23 .Available from: CrossRefGoogle Scholar
  19. 19.
    Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem [Internet]. 2012;3:167–74 [cited 2015 Jul 27]. Available from: Scholar
  20. 20.
    Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis [Internet]. 2010;31:1509–15 .Available from: CrossRefGoogle Scholar
  21. 21.
    Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One [Internet]. 2010;5:e11394 [cited 2015 Sep 2]. Available from: Scholar
  22. 22.
    von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res [Internet]. 2013;19:2368–80 .Available from: CrossRefGoogle Scholar
  23. 23.
    Gong K, Zhang N, Zhang Z, Na Y. Coexpression of erythopoietin and erythopoietin receptor in sporadic clear cell renal cell carcinoma. Cancer Biol. Ther. 2006;5:582–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Morais C, Johnson DW, Vesey DA, Gobe GC. Functional significance of erythropoietin in renal cell carcinoma. BMC Cancer [Internet]. 2013;13:14 [cited 2016 Jan 15]. Available from: Scholar
  25. 25.
    Dorević G, Matusan-Ilijas K, Babarović E, Hadzisejdić I, Grahovac M, Grahovac B, et al. Hypoxia inducible factor-1alpha correlates with vascular endothelial growth factor a and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res [Internet]. 2009;28:40 .Available from: CrossRefGoogle Scholar
  26. 26.
    Rioux-Leclercq N, Fergelot P, Zerrouki S, Leray E, Jouan F, Bellaud P, et al. Plasma level and tissue expression of vascular endothelial growth factor in renal cell carcinoma: a prospective study of 50 cases. Hum Pathol [Internet]. 2007;38:1489–95 [cited 2016 Feb 10]. Available from: Scholar
  27. 27.
    Song SH, Jeong IG, You D, Hong JH, Hong B, Song C, et al. VEGF/VEGFR2 and PDGF-B/PDGFR-β expression in non-metastatic renal cell carcinoma: a retrospective study in 1,091 consecutive patients. Int J Clin Exp Pathol [Internet]. 2014;7:7681–9 [cited 2016 Feb 10]. Available from: Scholar
  28. 28.
    Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol [Internet]. 1982;6:655–63 .Available from: CrossRefGoogle Scholar
  29. 29.
    Maxwell AP, Lappin TR, Johnston CF, Bridges JM, McGeown MG. Erythropoietin production in kidney tubular cells. Br J Haematol [Internet]. 1990;74:535–9 .Available from: CrossRefGoogle Scholar
  30. 30.
    Fairchild Benyo D, Conrad KP. Expression of the erythropoietin receptor by trophoblast cellsin the human placenta. Biol Reprod [Internet]. 1999;60:861–70 .Available from: CrossRefGoogle Scholar
  31. 31.
    Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res [Internet]. 2006;66:6683–91 .Available from: CrossRefGoogle Scholar
  32. 32.
    Miyake M, Goodison S, Lawton A, Zhang G, Gomes-Giacoia E, Rosser CJ. Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions. J Hematol Oncol [Internet] Journal of Hematology & Oncology. 2013;6:65 .Available from: CrossRefGoogle Scholar
  33. 33.
    Chuang M-J, Sun K-H, Tang S-J, Deng M-W, Y-H W, Sung J-S, et al. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci [Internet]. 2008;99:905–13 .Available from: CrossRefGoogle Scholar
  34. 34.
    Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res [Internet]. 2001;61:5215–22 .Available from: Google Scholar
  35. 35.
    Badalian G, Derecskei K, Szendroi A, Szendroi M, Timar J. EGFR and VEGFR2 protein expressions in bone metastases of clear cell renal cancer. Anticancer Res [Internet]. 2007;27:889–94 .Available from: Google Scholar
  36. 36.
    Fergelot P, Rioux-Leclercq N, Patard JJ. Molecular pathways of tumour angiogenesis and new targeted therapeutic approaches in renal cancer. Prog Urol [Internet]. 2005;15:1021–9 .Available from: Google Scholar
  37. 37.
    Paradis V, Lagha NB, Zeimoura L, Blanchet P, Eschwege P, Ba N, et al. Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch [Internet]. 2000;436:351–6 [cited 2016 Feb 10]. Available from: Scholar
  38. 38.
    Yoshino S, Kato M, Okada K. Evaluation of the prognostic significance of microvessel count and tumor size in renal cell carcinoma. Int J Urol [Internet]. 1998;5:119–23 [cited 2016 Feb 10]. Available from: Scholar
  39. 39.
    Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem [Internet]. 1995;270:1230–7 .Available from: CrossRefGoogle Scholar
  40. 40.
    Seibold ND, Schild SE, Gebhard MP, Noack F, Schröder U, Rades D. Prognosis of patients with locally advanced squamous cell carcinoma of the head and neck. Impact of tumor cell expression of EPO and EPO-R. Strahlentherapie und Onkol. Organ der Dtsch. Röntgengesellschaft ... [et al] [Internet]. 2013;189:559–565. [cited 2016 Feb 10]. Available from:
  41. 41.
    Baltaziak M, Wincewicz A, Kanczuga-Koda L, Lotowska JM, Koda M, Sulkowska U, et al. The relationships between hypoxia-dependent markers: HIF-1alpha, EPO and EPOR in colorectal cancer. Folia Histochem Cytobiol [Internet]. 2013;51:320–5 [cited 2016 Feb 10]. Available from: Scholar
  42. 42.
    Liang K, Qiu S, Lu Y, Fan Z. Autocrine/paracrine erythropoietin regulates migration and invasion potential and the stemness of human breast cancer cells. Cancer Biol Ther. 2014;15:89–98.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee YS, Vortmeyer AO, Lubensky IA, Vogel TW, Ikejiri B, Ferlicot S, et al. Coexpression of erythropoietin and erythropoietin receptor in von Hippel-Lindau disease-associated renal cysts and renal cell carcinoma. Clin Cancer Res [Internet]. 2005;11:1059–64 .Available from: Google Scholar
  44. 44.
    Michael A, Politi E, Havranek E, Corbishley C, Karapanagiotou L, Anderson C, et al. Prognostic significance of erythropoietin expression in human renal cell carcinoma. BJU Int [Internet]. 2007;100:291–4 .Available from: CrossRefGoogle Scholar
  45. 45.
    Pazos A, Acciones de los Fármacos I. Interacciones fármaco y receptor. In: Flórez J, Armijo JA, Mediavilla A, editors. Farmacol. Humana. Barcelona: Masson; 2004. p. 7–17.Google Scholar
  46. 46.
    Gobe G, Rubin M, Williams G, Sawczuk I, Buttyan R. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Invest [Internet]. 2002;20:324–32 .Available from: CrossRefGoogle Scholar
  47. 47.
    Zhang X, Takenaka I. Cell proliferation and apoptosis with BCL-2 expression in renal cell carcinoma. Urology [Internet]. 2000;56:510–5 .Available from: CrossRefGoogle Scholar
  48. 48.
    Szenajch J, Wcislo G, Jeong JY, Szczylik C, Feldman L. The role of erythropoietin and its receptor in growth, survival and therapeutic response of human tumor cells from clinic to bench - a critical review. Biochim Biophys Acta [Internet] Elsevier BV. 2010;1806:82–95. doi: 10.1016/j.bbcan.2010.04.002.Google Scholar
  49. 49.
    Scaglia N, Caviglia JM, Igal RA. High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta [Internet]. 2005;1687:141–51 .Available from: CrossRefGoogle Scholar
  50. 50.
    Hess D, Igal RA. Genistein downregulates de novo lipid synthesis and impairs cell proliferation in human lung cancer cells. Exp Biol Med [Internet]. 2011;236:707–13 .Available from: CrossRefGoogle Scholar
  51. 51.
    Angelucci C, Maulucci G, Colabianchi A, Iacopino F, D’Alessio A, Maiorana A, et al. Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts. Br J Cancer [Internet]. 2015;112:1675–86 [cited 2015 Sep 2]. Available from: Scholar
  52. 52.
    Igal RA, Ariel Igal R. Roles of stearoylCoA desaturase-1 in the regulation of cancer cell growth, survival and tumorigenesis. Cancers (Basel) [Internet]. 2011;3:2462–77 .Available from: CrossRefGoogle Scholar
  53. 53.
    Lee HJ, Ryu JM, Jung YH, Oh SY, Lee S-J, Han HJ. Novel pathway for hypoxia-induced proliferation and migration in human mesenchymal stem cells: involvement of HIF-1α, FASN, and mTORC1. Stem Cells [Internet]. 2015;33:2182–95. doi: 10.1002/stem.2020.CrossRefGoogle Scholar
  54. 54.
    Ito K, Yoshii H, Asano T, Horiguchi A, Sumitomo M, Hayakawa M, et al. Impact of increased erythropoietin receptor expression and elevated serum erythropoietin levels on clinicopathological features and prognosis in renal cell carcinoma. Exp Ther Med. 2012;3:937–44.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Holder AM, Gonzalez-Angulo AM, Chen H, Akcakanat A, Do KA, Fraser Symmans W, et al. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res Treat. 2013;137:319–27.CrossRefPubMedGoogle Scholar
  56. 56.
    Chen L, Shi Y, Yuan J, Han Y, Qin R, Wu Q, et al. HIF-1 alpha overexpression correlates with poor overall survival and disease-free survival in gastric cancer patients post-gastrectomy. PLoS One. 2014;9:1–12.Google Scholar
  57. 57.
    Ren W, Mi D, Yang K, Cao N, Tian J, Li Z, et al. The expression of hypoxia-inducible factor-1α and its clinical significance in lung cancer: a systematic review and meta-analysis. Swiss Med Wkly. 2013;143:1–12.Google Scholar
  58. 58.
    Fan Y, Li H, Ma X, Gao Y, Chen L, Li X, et al. Prognostic significance of hypoxia-inducible factor expression in renal cell carcinoma: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e1646.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Tania Romina Stoyanoff
    • 1
  • Juan Pablo Rodríguez
    • 1
  • Juan Santiago Todaro
    • 1
  • Joaquín Diego Espada
    • 2
  • Juan Pablo Melana Colavita
    • 1
  • Nora Cristina Brandan
    • 1
  • Adriana Mónica Torres
    • 3
  • María Victoria Aguirre
    • 1
  1. 1.Laboratory of Biochemical Investigations (LIBIM), Basic Medical Sciences Department, School of MedicineNational Northeastern University (UNNE), IQUIBA-CONICETCorrientesArgentina
  2. 2.Department of UrologyJ.R. Vidal HospitalCorrientesArgentina
  3. 3.Pharmacology, Faculty of Biochemical and Pharmaceutical SciencesNational University of Rosario (UNR), CONICETRosarioArgentina

Personalised recommendations