Tumor Biology

, Volume 37, Issue 10, pp 13029–13038 | Cite as

Biomarkers of genome instability and cancer epigenetics

  • Adriana H. O. Reis
  • Fernando R. Vargas
  • Bernardo Lemos


Tumorigenesis is a multistep process involving genetic and epigenetic alterations that drive somatic evolution from normal human cells to malignant derivatives. Collectively, genetic and epigenetic alterations might be combined into biomarkers for the assessment of risk, the detection of early stage tumors, and accurate tumor characterization before and after treatment. Recent efforts have provided systematic approaches to cancer genomics through the application of massive sequencing of specific tumor types. Here, we review biomarkers of genome instability and epigenetics. Cancer evolvability and adaptation emerge through genetic and epigenetic lesions of a variety of sizes and qualities—from point mutations and small insertions/deletions to large-scale chromosomal rearrangements, alterations in whole chromosome copy number, preferential allelic expression of cancer risk alleles, and mechanisms that increase tumor mutation rates. We also review specific epigenetic mechanisms that facilitate or hinder tumor adaptation, including DNA methylation, histone modification, nucleosome remodeling, transcription factor activity, and small non-coding RNAs. Given the complexity of the carcinogenic process, the challenge ahead will be to interpret disparate signals across hundreds of genes and summarize these signals into a single actionable diagnosis that translates into specific treatments. Another challenge is to refine preventive efforts through the identification of epigenetic processes that mediate increased cancer rates in individuals exposed to sources of toxic environmental stress and pollution, specially through development and early childhood.


Epigenetics Genome instability Tumorigenesis Biomarkers 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Chappell G et al. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. Int J Cancer. 2014;134(12):2778–88.Google Scholar
  3. 3.
    Hauptman N, Glavac D. MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol. 2013;47(4):311–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144((5):646–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Almendro V et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 2014;6(3):514–27.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Huppi K et al. MicroRNAs and genomic instability. Semin Cancer Biol. 2007;17(1):65–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993;365(6443):274–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Parsons R et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993;75(6):1227–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Frontiers in Oncology. 2013;3:272.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Aplan PD. Causes of oncogenic chromosomal translocation. Trends in Genetics: TIG. 2006;22(1):46–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.PubMedGoogle Scholar
  14. 14.
    Hermans A et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Manolov G, Manolova Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature. 1972;237(5349):33–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Unniraman S, Zhou S, Schatz DG. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nat Immunol. 2004;5(11):1117–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. Frontiers in oncology. 2013;3:302.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13(6):528–38.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bettington M et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62(3):367–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamagishi H, Kuroda H, Imai Y, Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer. 2016;35(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Issa JP. Colon Cancer: it’s CIN or CIMP. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2008;14(19):5939–40.CrossRefGoogle Scholar
  23. 23.
    Karageorgos I et al. Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach. Human Genomics. 2015;9:12.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Loo LW et al. Cis-expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PloS one. 2012;7(2):e30477.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sille FC, Thomas R, Smith MT, Conde L, Skibola CF. Post-GWAS functional characterization of susceptibility variants for chronic lymphocytic leukemia. PLoS One. 2012;7(1):e29632.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Li Y et al. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010;11(4):321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kim HS, Minna JD, White MA. GWAS meets TCGA to illuminate mechanisms of cancer predisposition. Cell. 2013;152(3):387–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis. 2011;32(7):945–54.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gray PN, Dunlop CL, Elliott AM. Not all next generation sequencing diagnostics are created equal: understanding the nuances of solid tumor assay design for somatic mutation detection. Cancers. 2015;7(3):1313–32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Weinstein JN et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hudson TJ et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Verma M et al. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomark Prev. 2013;23(2):223–33.CrossRefGoogle Scholar
  33. 33.
    Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet. 2010;70:277–308.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Uemura M et al. Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene. 2011;31(10):1254–63.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Delpu Y, Cordelier P, Cho WC. Torrisani J DNA methylation and cancer diagnosis. Int J Mol Sci. 2013;14(7):15029–58.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Belinsky SA et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95(20):11891–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wong IH et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999;59(1):71–3.PubMedGoogle Scholar
  38. 38.
    Zou HZ et al. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2002;8(1):188–91.Google Scholar
  39. 39.
    Esteller M et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000a;343(19):1350–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Shen L et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 2005;97(18):1330–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Harden SV, Guo Z, Epstein JI, Sidransky D. Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol. 2003;169(3):1138–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakamichi I et al. Correlation between promoter hypermethylation of GSTP1 and response to chemotherapy in diffuse large B cell lymphoma. Ann Hematol. 2007;86(8):557–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Hashad DI, Hashad MM, Talaat IM, Ibrahim MA. Role of glutathione-S-transferase P1 hypermethylation in molecular detection of prostate cancer. Genet Test Mol Biomarkers. 2011;15(10):667–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Saxena A et al. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med. 2012;4(6):1097–103.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–9.PubMedGoogle Scholar
  46. 46.
    Menigatti M et al. Methylation pattern of different regions of the MLH1 promoter and silencing of gene expression in hereditary and sporadic colorectal cancer. Genes Chromosomes Cancer. 2001;31(4):357–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Bischoff J et al. hMLH1 promoter hypermethylation and MSI status in human endometrial carcinomas with and without metastases. Clin Exp Metastasis. 2012;29(8):889–900.PubMedCrossRefGoogle Scholar
  48. 48.
    Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092–6.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57(16):3347–50.PubMedGoogle Scholar
  50. 50.
    Esteller M et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000a;92(7):564–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bennett KL et al. Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 2008;68(12):4494–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Grutzmann R et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One. 2008;3(11):e3759.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lofton-Day C et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Connolly D et al. Septin 9 isoform expression, localization, and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res. 2011;13(4):R76.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ogino S et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122(12):2767–73.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Igarashi S et al. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2010;16(21):5114–23.CrossRefGoogle Scholar
  57. 57.
    Martinez JG et al. Hypomethylation of LINE-1, and not centromeric SAT-alpha, is associated with centromeric instability in head and neck squamous cell carcinoma. Cell Oncol (Dordr). 2012;35(4):259–67.CrossRefGoogle Scholar
  58. 58.
    Nishida N et al. Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma. PLoS One. 2013;8(9):e72312.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Raval A et al. Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes. Blood. 2012;120(24):4812–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.PubMedCrossRefGoogle Scholar
  61. 61.
    Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Jaju RJ et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood. 2001;98(4):1264–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Rosati R et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 2002;99(10):3857–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Stransky N et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Barbieri CE et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Grasso CS et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hammerman PS et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRefGoogle Scholar
  69. 69.
    Peifer M et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zang ZJ et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Bernt KM et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66–78.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pasqualucci L et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Robinson DR et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 2011;17(12):1646–51.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Choi JH et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92(12):1300–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Halkidou K et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate. 2004;59(2):177–89.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang Z et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94(1):11–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Burdelski C et al. HDAC1 overexpression independently predicts biochemical recurrence and is associated with rapid tumor cell proliferation and genomic instability in prostate cancer. Exp Mol Pathol. 2015;98(3):419–26.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu P et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Song J et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113(4):264–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Huang R et al. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget. 2016;7(4):4695–711.PubMedGoogle Scholar
  81. 81.
    Wilson AJ et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281(19):13548–58.PubMedCrossRefGoogle Scholar
  82. 82.
    Jiao F et al. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer. Oncotarget. 2016:16505–16.Google Scholar
  83. 83.
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Nakagawa M et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769–74.PubMedGoogle Scholar
  85. 85.
    Oehme I et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2009;15(1):91–9.CrossRefGoogle Scholar
  86. 86.
    Li L et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. . Oncogene. 2015. doi: 10.1038/onc.2015.476.Google Scholar
  87. 87.
    Hsieh CL, et al. Alterations in histone deacetylase 8 lead to cell migration and poor prognosis in breast cancer. Life Sciences. 2016.Google Scholar
  88. 88.
    Marquard L et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology. 2009;54(6):688–98.PubMedCrossRefGoogle Scholar
  89. 89.
    Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opin Ther Targets. 2010;14(6):577–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Hrabeta J, Stiborova M, Adam V, Kizek R, & Eckschlager, T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013.Google Scholar
  91. 91.
    Zhang J et al. microRNA-22 Downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010;103(8):1215–20.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Varela I et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jones S et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wiegand KC et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Li M et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43(9):828–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Biankin AV et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Fujimoto A et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Hodis E et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Huang J et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44(10):1117–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Krauthammer M et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMedCrossRefGoogle Scholar
  103. 103.
    Majem B, Rigau M, Reventos J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci. 2015;16(4):8676–98.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gilad S et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2(12):919–29.PubMedCrossRefGoogle Scholar
  108. 108.
    Kunej T et al. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717(1–2):77–84.PubMedCrossRefGoogle Scholar
  109. 109.
    Dohner H et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Calin GA et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S AProc Natl Acad Sci U S A. 2002;99(24):15524–9.CrossRefGoogle Scholar
  111. 111.
    Mitchell PS et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Reis AH, Vargas FR, Lemos B. More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet. 2012;3:284.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Liu X et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res. 2013;32(1):96.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Tian X, Xu G. Clinical value of lncRNA MALAT1 as a prognostic marker in human cancer: systematic review and meta-analysis. BMJ open. 2015;5(9):e008653.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhu J et al. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. PLoS One. 2015;10(10):e0139790.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One. 2013;8(1):e55684.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wang Y, Liu XJ, Yao XD. Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score. Chin J Cancer Res. 2014;26(4):493–500.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Genetics ProgramInstituto Nacional de CancerRio de JaneiroBrazil
  2. 2.Genetics and Molecular Biology DepartmentUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
  3. 3.Birth Defects Epidemiology LaboratoryInstituto Oswaldo CruzRio de JaneiroBrazil
  4. 4.Program in Molecular and Integrative Physiological Sciences, Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonUSA

Personalised recommendations