Advertisement

Tumor Biology

, Volume 37, Issue 10, pp 13377–13384 | Cite as

Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer

  • Vivian Labovsky
  • Leandro Marcelo Martinez
  • María de Luján Calcagno
  • Kevin Mauro Davies
  • Hernán García-Rivello
  • Alejandra Wernicke
  • Leonardo Feldman
  • María Belén Giorello
  • Ayelén Matas
  • Francisco Raúl Borzone
  • Scott C. Howard
  • Norma Alejandra Chasseing
Original Article

Abstract

Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.

Keywords

Breast cancer Cancer-associated fibroblasts Interleukin-6 receptor Mesenchymal stem cells Spindle-shaped stromal cells 

Notes

Acknowledgments

The authors thank the Pathology Department of Italian Hospital for the help with tumor sample collection. This research was supported by grants from the National Agency of Scientific and Technological Promotion (FONCYT PICT 2006-01915), Argentina; Grant PIP2011 (166) from the National Council of Scientific and Technical Research CONICET (PIP 2011/2013), Argentina; Roemmers Foundation (2009–2011), Argentina, and Florencio Fiorini Foundation (2013), Argentina, and René Barón Foundation (2015), Argentina.

Compliance with ethical standards

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Moreover, we have obtained a statement of informed consent to publish from the participant (or legal parent or guardian for children) to report individual patient data.

Conflicts of interest

None.

References

  1. 1.
    Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int. 2014;14:41.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cammarota F, Laukkanen MO. Mesenchymal stem/stromal cells in stromal evolution and cancer progression. Stem Cells Int. 2016;2016:4824573.CrossRefPubMedGoogle Scholar
  3. 3.
    Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19:329–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:E7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dudley AC, Shih SC, Cliffe AR, Hida K, Klagsbrun M. Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br J Cancer. 2008;99:118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qiao A, Gu F, Guo X, Zhang X, Fu L. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med. 2016. doi: 10.1007/s11684-016-0431-5. PubMedGoogle Scholar
  8. 8.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.CrossRefPubMedGoogle Scholar
  9. 9.
    Jung YY, Kim HM, Koo JS. The role of cancer-associated fibroblasts in breast cancer pathobiology. Histol Histopathol. 2015. doi: 10.14670/HH-11-700. PubMedGoogle Scholar
  10. 10.
    Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015;361:155–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21:40–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Sun X, Mao Y, Wang J, Zu L, Hao M, Cheng G, et al. IL-6 secreted by cancer associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene. 2014. doi: 10.1038/onc.2014.158. Google Scholar
  13. 13.
    Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 2012;133:459–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res. 2012;14:R104.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 2014;25:61–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Recouvreux S, Sampayo R, Bessone MI, Simian M. Microenvironment and endocrine resistance in breast cancer: friend or foe? World J Clin Oncol. 2015;6:207–11.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 2015;75:4681–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Schor SL, Ellis IR, Jones SJ, Baillie R, Seneviratne K, Clausen J, et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor associated stromal cells. Cancer Res. 2003;63:8827–36.PubMedGoogle Scholar
  19. 19.
    Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008;22:559–74.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta. 2013;1836:321–35.PubMedGoogle Scholar
  21. 21.
    Monteiro AC, Leal AC, Gonçalves-Silva T, Mercadante AC, Kestelman F, Chaves SB, et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 2013;8:e68171.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21:139–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Labovsky V, Martinez LM, Davies KM, García-Rivello H, Calcagno Mde L, Matas A, et al. Association between ligands and receptors related to the progression of early breast cancer in tumor epithelial and stromal cells. Clin Breast Cancer. 2015;15:e13–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Secchiero P, Melloni E, Corallini F, Beltrami AP, Alviano F, Milani D, et al. Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells. 2008;26:2955–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 2013;15:848–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hurst DR, Welch DR. A MSC-ing link in metastasis? Nat Med. 2007;13:1289–91.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pestalozzi BC, Luporsi-Gely E, Jost LM, Bergh J, ESMO Guidelines Task Force. ESMO Minimum Clinical Recommendations for diagnosis, adjuvant treatment and follow-up of primary breast cancer. Ann Oncol. 2005;16(Suppl 1):i7–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Martinez LM, Labovsky V, Calcagno M d L, Davies KM, Garcia Rivello H, Bianchi MS, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS One. 2015;10:e0121421.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.CrossRefPubMedGoogle Scholar
  31. 31.
    Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell. 2008;13:394–406.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32:303–15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Kruijf EM, van Nes JG, van de Velde CJ, Putter H, Smit VT, Liefers GJ, et al. Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple negative carcinoma patients. Breast Cancer Res Treat. 2011;125:687–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Qian N, Ueno T, Kawaguchi-Sakita N, Kawashima M, Yoshida N, Mikami Y, et al. Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci. 2011;102:1590–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Gujam FJ, Edwards J, Mohammed ZM, Going JJ, McMillan DC. The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer. 2014;111:157–65.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, et al. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of α-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Corallini F, Celeghini C, Rimondi E, di Iasio MG, Gonelli A, Secchiero P, et al. Trail down-regulates the release of osteoprotegerin (OPG) by primary stromal cells. J Cell Physiol. 2011;226:2279–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Yin S, Rishi AK, Reddy KB. Anti-estrogen-resistant breast cancer cells are sensitive to cisplatin plus TRAIL treatment. Oncol Rep. 2015;33:1475–80.PubMedGoogle Scholar
  39. 39.
    Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res. 2011;3:177–89.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Vivian Labovsky
    • 1
  • Leandro Marcelo Martinez
    • 1
  • María de Luján Calcagno
    • 2
  • Kevin Mauro Davies
    • 3
  • Hernán García-Rivello
    • 3
  • Alejandra Wernicke
    • 3
  • Leonardo Feldman
    • 4
  • María Belén Giorello
    • 1
  • Ayelén Matas
    • 1
  • Francisco Raúl Borzone
    • 1
  • Scott C. Howard
    • 5
  • Norma Alejandra Chasseing
    • 1
  1. 1.Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Anatomía PatológicaHospital ItalianoBuenos AiresArgentina
  4. 4.Departamento de Trasplante de Medula ÓseaFundación FavaloroBuenos AiresArgentina
  5. 5.University of MemphisMemphisUSA

Personalised recommendations