Tumor Biology

, Volume 37, Issue 9, pp 12791–12803 | Cite as

Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis

  • Le Shi
  • Fan Yang
  • Fei Luo
  • Yi Liu
  • Feng Zhang
  • Meijuan Zou
  • Qizhan Liu
Original Article


Hepatocellular carcinoma (HCC) is a highly vascular tumor with high microvessel density and high levels of circulating vascular endothelial growth factor (VEGF). Thus, the angiogenesis pathway is an attractive therapeutic target for HCC. The anti-tumor effects of evodiamine, a quinolone alkaloid isolated from Euodia rutaecarpa (Juss.) Benth. (Rutaceae), were investigated in a mouse xenograft model using BALB/c nude mice, various HCC cell lines (HepG2, SMMC-7721, H22), and human umbilical vein endothelial cells (HUVECs). The effects of evodiamine on tumor volumes and weights, levels of tumor markers, angiogenesis in vivo and in vitro, cell viability, and cell migration and invasion were measured, and the mechanism through which its effects are achieved was investigated. Transcriptional regulation of VEGFa via interaction with β-catenin was established by luciferase activity assays and electrophoretic mobility shift assays. In a subcutaneous H22 xenograft model, evodiamine inhibited tumor growth and reduced serum tumor markers and the levels of β-catenin and VEGFa. It also blocked VEGF-induced angiogenesis in a Matrigel plug assay. Evodiamine suppressed cellular proliferation, invasion, and migration and inhibited tube formation of HUVECs. Moreover, in a concentration-dependent manner, evodiamine reduced the number of capillary sprouts from Matrigel-embedded rat thoracic aortic rings. Also, evodiamine suppressed various biomarkers of angiogenesis and the expression of β-catenin. Evodiamine decreased β-catenin levels activated by LiCl, which led to reduced expression of VEGFa. In addition, β-catenin interacted with VEGFa and transcriptionally regulated VEGFa, an effect inhibited by evodiamine in HCCs. Moreover, in an SMMC-7721 xenograft model, evodiamine suppressed tumor growth, various biomarkers of angiogenesis, and the levels of β-catenin and VEGFa. Evodiamine has anti-tumor effects on HCCs through inhibiting β-catenin, which interacts with and reduces VEGFa expression, thus inhibiting angiogenesis. These results indicate that evodiamine, which inhibits cellular invasion and migration and blocks angiogenesis, is a potential therapeutic agent for HCCs.


Evodiamine Angiogenesis Hepatocellular carcinoma β-Catenin Vascular endothelial growth factor 



Hepatocellular carcinoma


Vascular endothelial growth factor


Human umbilical vein endothelial cells


Dulbecco’s modified Eagle medium


Fetal bovine serum


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide




3,3-Diaminobenzidine tetrahydrochloride


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis


Polyvinylidene fluoride


Bovine serum albumin


Horseradish peroxidase


Alpha fetal protein


Tumor-specific growth factor



The authors wish to thank Donald L. Hill (University of Alabama at Birmingham, USA), an experienced, English-speaking scientific editor for editing.

Compliance with ethical standards

Conflicts of interest



This work was supported by the Natural Science Foundations of China (81273114, 81302467, 81402959), the Postgraduate Innovation Project of Jiangsu province (CXZZ14_0421, CXZZ14_0951, and KYLX15_0974), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (2014).


  1. 1.
    Adams M, Wube AA, Bucar F, Bauer R, Kunert O, Haslinger E. Quinolone alkaloids from evodia rutaecarpa: a potent new group of antimycobacterial compounds. Int J Antimicrob Agents. 2005;26:262–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Ko JS, Rho MC, Chung MY, Song HY, Kang JS, Kim K, et al. Quinolone alkaloids, diacylglycerol acyltransferase inhibitors from the fruits of evodia rutaecarpa. Planta Med. 2002;68:1131–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Tang Y, Wu K, Feng X, Huang L. [synthesis and bioaction of 2-alkyl-4(1h)-quinolone]. Yao Xue Xue Bao. 1998;33:121–7.PubMedGoogle Scholar
  4. 4.
    Zhang PT, Pan BY, Liao QF, Yao MC, Xu XJ, Wan JZ, et al. Simultaneous quantification of limonin, two indolequinazoline alkaloids, and four quinolone alkaloids in evodia rutaecarpa (juss.) benth by hplc-dad method. J Anal Methods Chem. 2013;2013:827361.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu R, Chu X, Sun A, Kong L. Preparative isolation and purification of alkaloids from the chinese medicinal herb evodia rutaecarpa (juss.) benth by high-speed counter-current chromatography. J Chromatogr A. 2005;1074:139–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Adams M, Kunert O, Haslinger E, Bauer R. Inhibition of leukotriene biosynthesis by quinolone alkaloids from the fruits of evodia rutaecarpa. Planta Med. 2004;70:904–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Hamasaki N, Ishii E, Tominaga K, Tezuka Y, Nagaoka T, Kadota S, et al. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a chinese herbal medicine, gosyuyu (wu-chu-yu), against helicobacter pylori in vitro. Microbiol Immunol. 2000;44:9–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Adams M, Mahringer A, Kunert O, Fricker G, Efferth T, Bauer R. Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the chinese herb evodia rutaecarpa. Planta Med. 2007;73:1554–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang X, Li W, Yang XW. New cytotoxic quinolone alkaloids from fruits of evodia rutaecarpa. Fitoterapia. 2012;83:709–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Bak EJ, Park HG, Kim JM, Yoo YJ, Cha JH. Inhibitory effect of evodiamine alone and in combination with rosiglitazone on in vitro adipocyte differentiation and in vivo obesity related to diabetes. Int J Obes (Lond). 2010;34:250–60.CrossRefGoogle Scholar
  11. 11.
    Ko HC, Wang YH, Liou KT, Chen CM, Chen CH, Wang WY, et al. Anti-inflammatory effects and mechanisms of the ethanol extract of evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. Eur J Pharmacol. 2007;555:211–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Shyu KG, Lin S, Lee CC, Chen E, Lin LC, Wang BW, et al. Evodiamine inhibits in vitro angiogenesis: implication for antitumorgenicity. Life Sci. 2006;78:2234–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang C, Fan X, Xu X, Yang X, Wang X, Liang HP. Evodiamine induces caspase-dependent apoptosis and s phase arrest in human colon lovo cells. Anticancer Drugs. 2010;21:766–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang C, Li S, Wang MW. Evodiamine-induced human melanoma a375-s2 cell death was mediated by pi3k/akt/caspase and fas-l/nf-kappab signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicol In Vitro. 2010;24:898–904.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang J, Wu LJ, Tashino S, Onodera S, Ikejima T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma hela cells. Free Radic Res. 2008;42:492–504.CrossRefPubMedGoogle Scholar
  16. 16.
    Fei XF, Wang BX, Li TJ, Tashiro S, Minami M, Xing DJ, et al. Evodiamine, a constituent of evodiae fructus, induces anti-proliferating effects in tumor cells. Cancer Sci. 2003;94:92–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kan SF, Huang WJ, Lin LC, Wang PS. Inhibitory effects of evodiamine on the growth of human prostate cancer cell line lncap. Int J Cancer J Int Du Cancer. 2004;110:641–51.CrossRefGoogle Scholar
  18. 18.
    Ogasawara M, Matsubara T, Suzuki H. Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biol Pharm Bull. 2001;24:917–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Ogasawara M, Matsubara T, Suzuki H. Screening of natural compounds for inhibitory activity on colon cancer cell migration. Biol Pharm Bull. 2001;24:720–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang J, Cai X, Lu W, Hu C, Xu X, Yu Q, et al. Evodiamine inhibits stat3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells. Cancer Lett. 2013;328:243–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA. Angiogenesis: role of calcium-mediated signal transduction. Proc Natl Acad Sci U S A. 1995;92:1307–11.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G, et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res. 1996;2:1843–9.PubMedGoogle Scholar
  23. 23.
    Cai T, Fassina G, Morini M, Aluigi MG, Masiello L, Fontanini G, et al. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Laboratory Investigation. 1999;79:1151–9.PubMedGoogle Scholar
  24. 24.
    Singh AK, Seth P, Anthony P, Husain MM, Madhavan S, Mukhtar H, et al. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Arch Biochem Biophys. 2002;401:29–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 1989;338:557–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Hall RA, Lefkowitz RJ. Regulation of g protein-coupled receptor signaling by scaffold proteins. Circ Res. 2002;91:672–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Holnthoner W, Pillinger M, Groger M, Wolff K, Ashton AW, Albanese C, et al. Fibroblast growth factor-2 induces lef/tcf-dependent transcription in human endothelial cells. J Biol Chem. 2002;277:45847–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang F, Cheng J, Hackett NR, Lam G, Shido K, Pergolizzi R, et al. Adenovirus e4 gene promotes selective endothelial cell survival and angiogenesis via activation of the vascular endothelial-cadherin/akt signaling pathway. J Biol Chem. 2004;279:11760–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Schafer R, Abraham D, Paulus P, Blumer R, Grimm M, Wojta J, et al. Impaired ve-cadherin/beta-catenin expression mediates endothelial cell degeneration in dilated cardiomyopathy. Circulation. 2003;108:1585–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Nicosia RF, Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. Vitro Cell Dev Biol. 1990;26:119–28.CrossRefGoogle Scholar
  31. 31.
    Malinda KM. In vivo matrigel migration and angiogenesis assays. Methods Mol Med. 2001;46:47–52.PubMedGoogle Scholar
  32. 32.
    Tu K, Zheng X, Zan X, Han S, Yao Y, Liu Q. Evaluation of fbxw7 expression and its correlation with the expression of c-myc, cyclin e and p53 in human hepatocellular carcinoma. Hepatol Res. 2012;42:904–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, et al. Sustained il-6/stat-3 signaling in cholangiocarcinoma cells due to socs-3 epigenetic silencing. Gastroenterology. 2007;132:384–96.CrossRefPubMedGoogle Scholar
  34. 34.
    He X, Xu Z, Wang B, Zheng Y, Gong W, Huang G, et al. Upregulation of thrombomodulin expression by activation of farnesoid x receptor in vascular endothelial cells. Eur J Pharmacol. 2013;718:283–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Reiter MJ, Costello JE, Schwope RB, Lisanti CJ, Osswald MB. Review of commonly used serum tumor markers and their relevance for image interpretation. J Comput Assist Tomogr. 2015;39:825–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Yang XW, Zhang H, Li M, Du LJ, Yang Z, Xiao SY. Studies on the alkaloid constituents of evodia rutaecarpa (juss) benth var. Bodinaieri (dode) huang and their acute toxicity in mice. J Asian Nat Prod Res. 2006;8:697–703.CrossRefPubMedGoogle Scholar
  37. 37.
    Siveen KS, Ahn KS, Ong TH, Shanmugam MK, Li F, Yap WN, et al. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of akt/mtor pathway in an orthotopic mouse model. Oncotarget. 2014;5:1897–911.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007;39:212–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Gao W, Chang G, Wang J, Jin W, Wang L, Lin Y, et al. Inhibition of k562 leukemia angiogenesis and growth by selective na+/h + exchanger inhibitor cariporide through down-regulation of pro-angiogenesis factor vegf. Leuk Res. 2011;35:1506–11.CrossRefPubMedGoogle Scholar
  41. 41.
    Bishayee A, Darvesh AS. Angiogenesis in hepatocellular carcinoma: a potential target for chemoprevention and therapy. Curr Cancer Drug Targets. 2012;12:1095–118.PubMedGoogle Scholar
  42. 42.
    Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, et al. Potential role of signal transducer and activator of transcription (stat)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 1835;2013:46–60.Google Scholar
  43. 43.
    Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol Nutr Food Res. 2012;56:14–29.CrossRefPubMedGoogle Scholar
  44. 44.
    Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.CrossRefPubMedGoogle Scholar
  46. 46.
    Ferrara N, Gerber HP, LeCouter J. The biology of vegf and its receptors. Nat Med. 2003;9:669–76.CrossRefPubMedGoogle Scholar
  47. 47.
    Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol. 2004;137:668–74.PubMedGoogle Scholar
  48. 48.
    Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol. 2005;2:562–77.CrossRefPubMedGoogle Scholar
  49. 49.
    Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2002;2:826–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49:507–21.CrossRefPubMedGoogle Scholar
  51. 51.
    Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15–35. discussion 35-16.PubMedGoogle Scholar
  52. 52.
    Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, et al. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol. 2003;162:1111–22.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the wnt and k-ras pathways in colonic neoplasia. Cancer Res. 2001;61:6050–4.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Le Shi
    • 1
    • 2
    • 3
  • Fan Yang
    • 3
  • Fei Luo
    • 1
    • 2
  • Yi Liu
    • 1
    • 2
  • Feng Zhang
    • 3
  • Meijuan Zou
    • 4
  • Qizhan Liu
    • 1
    • 2
  1. 1.Institute of Toxicology, School of Public HealthNanjing Medical UniversityNanjingChina
  2. 2.The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public HealthNanjing Medical UniversityNanjingChina
  3. 3.School of PharmacyNanjing University of Chinese MedicineNanjingChina
  4. 4.Department of Pharmacology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina

Personalised recommendations