Skip to main content

Advertisement

Log in

ASPP2 suppresses stem cell-like characteristics and chemoresistance by inhibiting the Src/FAK/Snail axis in hepatocellular carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of death in cancer patients worldwide. Understanding the molecular pathogenesis of HCC recurrence and chemoresistance is key to improving patients’ prognosis. In this study, we report that downregulation of ASPP2, a member of the ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region-containing protein (ASPP) family, bestowed HCC cells with stem-like properties and resistance to chemotherapy, including the expansion of side population fractions, formation of hepatospheroids, expression of stem cell-associated genes, loss of chemosensitivity, and increased tumorigenicity in immunodeficient mice. An expression profiling assay revealed that ASPP2 specifically repressed focal adhesion kinase (FAK)/Src/extracellular signal regulated kinase (ERK) signaling. ASPP2 does this by physically interacting with C-terminal Src kinase (CSK) and stimulating its kinase activity, which eventually leads to activator protein 1 (AP1)-mediated downregulation of Snail expression. In addition, pharmacologic inhibition of Src attenuated the effects of ASPP2 deficiency. Our findings present functional and mechanistic insight into the critical role of ASPP2 in the inhibition of HCC stemness and drug resistance and may provide a new strategy for therapeutic combinations to treat HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EMT:

Epithelial-mesenchymal transition

GSEA:

Gene set enrichment analyses

IF:

Immunofluorescence

IP:

Immunoprecipitation

KEGG:

Kyoto Encyclopedia of Genes and Genomes

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

shRNA:

Short hairpin RNA

SP:

Side population

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

    Article  CAS  PubMed  Google Scholar 

  3. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Rao Pariti RK, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 2014;35(4):747–59.

    Article  CAS  PubMed  Google Scholar 

  5. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488–94.

    Article  CAS  PubMed  Google Scholar 

  6. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27(9):2059–68.

    Article  CAS  PubMed  Google Scholar 

  7. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 2009;69(2):466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trigiante G, Lu X. ASPP [corrected] and cancer. Nat Rev Cancer. 2006;6(3):217–26.

    Article  CAS  PubMed  Google Scholar 

  11. Sottocornola R, Royer C, Vives V, Tordella L, Zhong S, Wang Y, et al. ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell. 2010;19(1):126–37.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao J, Wu G, Bu F, Lu B, Liang A, Cao L, et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region-containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology. 2010;51(1):142–53.

    Article  CAS  PubMed  Google Scholar 

  13. Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson Jr JR, Elkahloun AG. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999;59(22):5656–61.

    CAS  PubMed  Google Scholar 

  14. Wang Y, Bu F, Royer C, Serres S, Larkin JR, Soto MS, et al. ASPP2 controls epithelial plasticity and inhibits metastasis through beta-catenin-dependent regulation of ZEB1. Nat Cell Biol. 2014;16(11):1092–104.

    Article  CAS  PubMed  Google Scholar 

  15. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44(1):240–51.

    Article  CAS  PubMed  Google Scholar 

  16. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.

    Article  CAS  PubMed  Google Scholar 

  17. Cao L, Fan X, Jing W, Liang Y, Chen R, Liu Y, et al. Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-kappaB-HIF-1alpha pathway. Oncotarget. 2015;6(9):6627–40.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hunter T. A tail of two src’s: mutatis mutandis. Cell. 1987;49(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  19. Langton PF, Colombani J, Aerne BL, Tapon N. Drosophila ASPP regulates C-terminal Src kinase activity. Dev Cell. 2007;13(6):773–82.

    Article  CAS  PubMed  Google Scholar 

  20. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Liu Y, Xu Y, Voorhees JJ, Fisher GJ. UV irradiation induces Snail expression by AP-1 dependent mechanism in human skin keratinocytes. J Dermatol Sci. 2010;60(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kopetz S, Shah AN, Gallick GE. Src continues aging: current and future clinical directions. Clin Cancer Res. 2007;13(24):7232–6.

    Article  CAS  PubMed  Google Scholar 

  23. Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia. 2010;12(8):599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson C, Nicholes K, Bustos D, Lin E, Song Q, Stephan JP, et al. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget. 2014;5(17):7328–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mak VC, Lee L, Siu MK, Wong OG, Lu X, Ngan HY, et al. Downregulation of ASPP2 in choriocarcinoma contributes to increased migratory potential through Src signaling pathway activation. Carcinogenesis. 2013;34(9):2170–7.

    Article  CAS  PubMed  Google Scholar 

  26. Chang AY, Wang M. Molecular mechanisms of action and potential biomarkers of growth inhibition of dasatinib (BMS-354825) on hepatocellular carcinoma cells. BMC Cancer. 2013;13:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finn RS, Aleshin A, Dering J, Yang P, Ginther C, Desai A, et al. Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology. 2013;57(5):1838–46.

    Article  CAS  PubMed  Google Scholar 

  28. Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8(4):781–94.

    Article  CAS  PubMed  Google Scholar 

  29. Katz C, Benyamini H, Rotem S, Lebendiker M, Danieli T, Iosub A, et al. Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proc Natl Acad Sci U S A. 2008;105(34):12277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tordella L, Koch S, Salter V, Pagotto A, Doondeea JB, Feller SM, et al. ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci U S A. 2013;110(44):17969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Royer C, Koch S, Qin X, Zak J, Buti L, Dudziec E, et al. ASPP2 links the apical lateral polarity complex to the regulation of YAP activity in epithelial cells. PLoS One. 2014;9(10):e111384.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13(3):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from Ministry of Science and Technology of China “973”and “863”programs (2014AA021103, 2014AA020704, 2010CB945600), National Nature Science Foundation of China (81472719, 81301781, 81402539), Beijing Municipal Commission of Science and Technology, Shanghai Key Laboratory of Cell Engineering (14DZ2272300), and Shanghai Leading Academic Discipline Project (B905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Ethics declarations

Ethical standards

The authors declare that all procedures performed in this study involving animals were approved by Institutional Animal Care and Use Committee (IACUC) of Second Military Medical University and PLA General Hospital.

Conflicts of interest

None

Additional information

Lu Xu and Xin Tong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Methods

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Tong, X., Zhang, S. et al. ASPP2 suppresses stem cell-like characteristics and chemoresistance by inhibiting the Src/FAK/Snail axis in hepatocellular carcinoma. Tumor Biol. 37, 13669–13677 (2016). https://doi.org/10.1007/s13277-016-5246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5246-0

Keywords

Navigation