Advertisement

Tumor Biology

, Volume 37, Issue 9, pp 12779–12789 | Cite as

HIC1 modulates uveal melanoma progression by activating lncRNA-numb

  • Guangcun Cheng
  • Jie He
  • Leilei Zhang
  • Shengfang Ge
  • He Zhang
  • Xianqun Fan
Original Article

Abstract

Uveal melanoma (UM) is the most common primary intraocular cancer in adults. Although the diagnosis modality of primary UM was improved significantly, there are currently no effective therapies for metastatic UM. Hypermethylated in cancer 1 (HIC1) is frequently deleted or epigenetically silenced in various human cancers. However, the role and mechanism of HIC1 in UM is still unclear. In this study, we found that HIC1 acted as a tumor suppressor and that its expression was downregulated in UM. Functional studies demonstrated that ectopic expression of HIC1 in UM cells inhibited cell proliferation and invasion. Moreover, through long non-coding RNA (lncRNA) microarray and real-time PCR, we found that expression of lncRNA-numb was activated by HIC1 in UM. The results provide evidence that lncRNA-numb is a newly proposed tumor suppressor that is involved in HIC1-induced phenotypes. Taken together, our studies of UM reveal a critical role of HIC1 in the regulation of tumorigenesis, at least partly through its downstream target, lncRNA-numb, and provide a potential therapeutic target for UM.

Keywords

Uveal melanoma HIC1 Long non-coding RNA Numb 

Abbreviations

HIC1

Hypermethylated in cancer 1

lncRNA

Long non-coding RNA

UM

Uveal melanoma

Notes

Acknowledgments

This work was supported by The National Natural Science Foundation of China (31501035, 31470757) and The China Postdoctoral Science Foundation (2015M570370), the Scientific Research Program of The National Health and Family Planning Commission of China (201402014), the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning (1410000159), the SMC-Chenxing Yong Scholar Program (2014, Class B), and the Science and Technology Commission of Shanghai (14JC1404100, 14JC1404200, 14430723100).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2016_5243_MOESM1_ESM.doc (34 kb)
ESM 1 Supplementary Table 1: The primers used in this study (DOC 33 kb)
13277_2016_5243_MOESM2_ESM.pdf (69 kb)
ESM 2 (PDF 69 kb)

References

  1. 1.
    Bedikian AY. Metastatic uveal melanoma therapy: current options. Int Ophthalmol Clin. 2006;46(1):151–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5. doi: 10.1016/j.ophtha.2011.01.040.CrossRefPubMedGoogle Scholar
  3. 3.
    Stang A, Parkin DM, Ferlay J, Jockel KH. International uveal melanoma incidence trends in view of a decreasing proportion of morphological verification. Int J Cancer. 2005;114(1):114–23. doi: 10.1002/ijc.20690.CrossRefPubMedGoogle Scholar
  4. 4.
    Pereira PR, Odashiro AN, Lim LA, Miyamoto C, Blanco PL, Odashiro M, et al. Current and emerging treatment options for uveal melanoma. Clin Ophthalmol. 2013;7:1669–82. doi: 10.2147/OPTH.S28863.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Accuracy of diagnosis of choroidal melanomas in the Collaborative Ocular Melanoma Study. COMS report no. 1. Arch Ophthalmol. 1990;108(9):1268–73.Google Scholar
  6. 6.
    Munzenrider JE. Uveal melanomas. Conservation treatment. Hematol Oncol Clin North Am. 2001;15(2):389–402.CrossRefPubMedGoogle Scholar
  7. 7.
    Woodman SE. Metastatic uveal melanoma: biology and emerging treatments. Cancer J. 2012;18(2):148–52. doi: 10.1097/PPO.0b013e31824bd256.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Field MG, Harbour JW. Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol. 2014;25(3):234–9. doi: 10.1097/ICU.0000000000000051.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hausler T, Stang A, Anastassiou G, Jockel KH, Mrzyk S, Horsthemke B, et al. Loss of heterozygosity of 1p in uveal melanomas with monosomy 3. Int J Cancer. 2005;116(6):909–13. doi: 10.1002/ijc.21086.CrossRefPubMedGoogle Scholar
  10. 10.
    Sisley K, Rennie IG, Cottam DW, Potter AM, Potter CW, Rees RC. Cytogenetic findings in six posterior uveal melanomas: involvement of chromosomes 3, 6, and 8. Genes Chromosomes Cancer. 1990;2(3):205–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kilic E, Naus NC, van Gils W, Klaver CC, van Til ME, Verbiest MM, et al. Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. Invest Ophthalmol Vis Sci. 2005;46(7):2253–7. doi: 10.1167/iovs.04-1460.CrossRefPubMedGoogle Scholar
  12. 12.
    Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer. 1997;19(1):22–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Parrella P, Sidransky D, Merbs SL. Allelotype of posterior uveal melanoma: implications for a bifurcated tumor progression pathway. Cancer Res. 1999;59(13):3032–7.PubMedGoogle Scholar
  14. 14.
    Daniels AB, Lee JE, MacConaill LE, Palescandolo E, Van Hummelen P, Adams SM, et al. High throughput mass spectrometry-based mutation profiling of primary uveal melanoma. Invest Ophthalmol Vis Sci. 2012;53(11):6991–6. doi: 10.1167/iovs.12-10427.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Henriquez F, Janssen C, Kemp EG, Roberts F. The T1799A BRAF mutation is present in iris melanoma. Invest Ophthalmol Vis Sci. 2007;48(11):4897–900. doi: 10.1167/iovs.07-0440.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9. doi: 10.1056/NEJMoa1000584.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene. 2014;33(39):4724–34. doi: 10.1038/onc.2013.418.CrossRefPubMedGoogle Scholar
  18. 18.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi: 10.1016/j.cell.2010.06.040.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fan J, Xing Y, Wen X, Jia R, Ni H, He J, et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 2015;16:139. doi: 10.1186/s13059-015-0705-2.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi: 10.1038/nrg2521.CrossRefPubMedGoogle Scholar
  21. 21.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi: 10.1016/j.cell.2009.02.006.CrossRefPubMedGoogle Scholar
  22. 22.
    Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet. 2009;5(4), e1000459. doi: 10.1371/journal.pgen.1000459.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancers. 2015;7(4):2169–82. doi: 10.3390/cancers7040884.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N, et al. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. J Invest Dermatol. 2015;135(10):2464–74. doi: 10.1038/jid.2015.200.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, et al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol. 2014;204(1):61–75. doi: 10.1083/jcb.201304152.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, et al. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res. 2014;74(3):862–72. doi: 10.1158/0008-5472.CAN-13-2420.CrossRefPubMedGoogle Scholar
  27. 27.
    Zheng J, Wang J, Sun X, Hao M, Ding T, Xiong D, et al. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res. 2013;19(6):1400–10. doi: 10.1158/1078-0432.CCR-12-2888.CrossRefPubMedGoogle Scholar
  28. 28.
    Rood BR, Leprince D. Deciphering HIC1 control pathways to reveal new avenues in cancer therapeutics. Expert Opin Ther Targets. 2013;17(7):811–27. doi: 10.1517/14728222.2013.788152.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Carter MG, Johns MA, Zeng X, Zhou L, Zink MC, Mankowski JL, et al. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum Mol Genet. 2000;9(3):413–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Wales MM, Biel MA, el Deiry W, Nelkin BD, Issa JP, Cavenee WK, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995;1(6):570–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen WY, Zeng X, Carter MG, Morrell CN, Chiu Yen RW, Esteller M, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003;33(2):197–202. doi: 10.1038/ng1077.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen W, Cooper TK, Zahnow CA, Overholtzer M, Zhao Z, Ladanyi M, et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell. 2004;6(4):387–98. doi: 10.1016/j.ccr.2004.08.030.CrossRefPubMedGoogle Scholar
  33. 33.
    Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, et al. Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev. 2008;22(6):770–85. doi: 10.1101/gad.1640908.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fleuriel C, Touka M, Boulay G, Guerardel C, Rood BR, Leprince D. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol. 2009;41(1):26–33. doi: 10.1016/j.biocel.2008.05.028.CrossRefPubMedGoogle Scholar
  35. 35.
    Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, et al. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24(5):932–41. doi: 10.1038/leu.2010.41.CrossRefPubMedGoogle Scholar
  36. 36.
    Pinte S, Stankovic-Valentin N, Deltour S, Rood BR, Guerardel C, Leprince D. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem. 2004;279(37):38313–24. doi: 10.1074/jbc.M401610200.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437–48. doi: 10.1016/j.cell.2005.08.011.CrossRefPubMedGoogle Scholar
  38. 38.
    Van Rechem C, Rood BR, Touka M, Pinte S, Jenal M, Guerardel C, et al. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem. 2009;284(31):20927–35. doi: 10.1074/jbc.M109.022350.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Foveau B, Boulay G, Pinte S, Van Rechem C, Rood BR, Leprince D. The receptor tyrosine kinase EphA2 is a direct target gene of hypermethylated in cancer 1 (HIC1). J Biol Chem. 2012;287(8):5366–78. doi: 10.1074/jbc.M111.329466.CrossRefPubMedGoogle Scholar
  40. 40.
    Dehennaut V, Loison I, Boulay G, Van Rechem C, Leprince D. Identification of p21 (CIP1/WAF1) as a direct target gene of HIC1 (Hypermethylated In Cancer 1). Biochem Biophys Res Commun. 2013;430(1):49–53. doi: 10.1016/j.bbrc.2012.11.045.CrossRefPubMedGoogle Scholar
  41. 41.
    Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 2015;22(1):5–7. doi: 10.1038/nsmb.2942.CrossRefPubMedGoogle Scholar
  42. 42.
    Sun M, Gadad SS, Kim DS, Kraus WL. Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell. 2015;59(4):698–711. doi: 10.1016/j.molcel.2015.06.023.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Ophthalmology, Shanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations