Tumor Biology

, Volume 37, Issue 10, pp 13307–13322 | Cite as

Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression

  • Dhivya Sridaran
  • Ganesan Ramamoorthi
  • Rasool MahaboobKhan
  • Premkumar Kumpati
Original Article


During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention.

Graphical abstract

Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic cytomorphological variations, alterations in expression patterns of adhesion markers, redox homeostasis, and metabolic reprogramming that supports epithelial to mesenchymal transition and cancer progression.


Tumor microenvironment Oxidative stress EMT Metabolic reprogramming Cancer progression 



This work was supported by DST-SERB (No. SB/EMEQ-082/2013) Project and University Grants Commission [UGC F. No. 37–109/2009 (SR)], India. SD was supported by Lady Tata Memorial Research Fellowship 2014.

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_5224_MOESM1_ESM.pdf (671 kb)
ESM 1 (PDF 670 kb)


  1. 1.
    Cummings MC, Simpson PT, Reid LE, et al. Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol. 2014;232(1):23–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Maltby S, Khazaie K, McNagny K. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta. 2009;1796:19–26.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Policastro LL, Ibañez IL, Notcovich C, et al. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal. 2013;19(8):854–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Lisanti MP, Martinez-Outschoorn UE, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs fertilizer. Cell Cycle. 2011;10(15):2440–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pizzimenti S, Toaldo C, Pettazzoni P, et al. The two-faced effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel). 2010;2(2):338–63.CrossRefGoogle Scholar
  8. 8.
    Dolled-Filhart MP, Rimm DL, Stroobant P. Quantitative in situ cancer proteomics: molecular pathology comes of age with automated tissue microarray analysis. Pers Med. 2005;2:291–300.CrossRefGoogle Scholar
  9. 9.
    Pavlides S, Vera I, Gandara R, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2012;16(11):1264–84.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Seluanov A, Vaidya A, Gorbunova V. Establishing primary adult fibroblast cultures from rodents. J Vis Exp. 2010;44:2033.Google Scholar
  11. 11.
    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Yang C, Liu Y, Lemmon MA, Kazanietz MG. Essential role for Rac in heregulin beta 1 mitogenic signaling: a mechanism that involves epidermal growth factor receptor and is independent of ErbB4. Mol Cell Biol. 2006;26:831–42.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moss DW, Henderson AR. Determination of lactate dehydrogenase activity by measurement of NADH consumption. Second edition ed. Tietz Text Book. Clin Chem Phila. 1994; p 816–818.Google Scholar
  16. 16.
    Wagstaff JL, Masterton RJ, Povey JF, et al. 1H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture. PLoS One. 2013;8(10):e77195.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis. 2012;29(4):81–95.CrossRefGoogle Scholar
  18. 18.
    Hagemann T, Lawrence T, McNeish I, et al. Re-educating tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2015;205(6):1261–8.CrossRefGoogle Scholar
  19. 19.
    Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res. 2013;119:107–25.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.CrossRefPubMedGoogle Scholar
  22. 22.
    López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252(1):1–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Wlassoff WA, Albright CD, Sivashinski MS, et al. Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate. J Pharm Pharmacol. 2007;59(11):1549–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Pickering AM, Vojtovich L, Tower J, Davies KJA. Oxidative stress adaptation with acute, chronic and repeated stress. Free Radic Biol Med. 2013;55:109–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Kundu N, Zhang S, Fulton AM. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis. 1995;13(1):16–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Mahalingaiah PK, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One. 2014;9(1):e87371.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Comito G, Giannoni E, Di Gennaro P, et al. Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer Lett. 2012;324:31–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.CrossRefGoogle Scholar
  29. 29.
    Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A. 1987;84:6020–4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials. 2010;31(36):9382–94.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rajah TT, Rambo DJ, Dmytryk JJ, Pento JT. Influence of antiestrogens on NIH-3T3-fibroblast-induced motility of breast cancer cells. Chemotherapy. 2001;47(1):56–69.CrossRefPubMedGoogle Scholar
  32. 32.
    Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.CrossRefPubMedGoogle Scholar
  33. 33.
    Rhee SG, Kang SW, Jeong W, et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005;17:183–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Cao C, Lu S, Kivlin R, et al. AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem. 2008;283:28897–908.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Copin JC, Gasche Y, Chan PH. Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic Biol Med. 2000;28(10):1571–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell-survival against oxidative stress. Free Radic Biol Med. 1994;17:235–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Trejo-Vargas A, Hernández-Mercado E, Ordóñez-Razo RM, et al. Bik subcellular localization in response to oxidative stress induced by chemotherapy, in two different breast cancer cell lines and a non-tumorigenic epithelial cell line. J Appl Toxicol. 2015;35(11):1262–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Werner E, Werb Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on rho GTPases. J Cell Biol. 2002;158:357–68.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harfouche R, Malak NA, Brandes RP, et al. Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J. 2005;19(12):1728–30.PubMedGoogle Scholar
  40. 40.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.CrossRefPubMedGoogle Scholar
  41. 41.
    Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, chemoresistance and cell survival. Antioxid Redox Signal. 2009;11(11):2701–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Barbouti A, Amorgianiotis C, Kolettas E, et al. Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radic Biol Med. 2007;43:1377–87.CrossRefPubMedGoogle Scholar
  43. 43.
    Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 2011;9:62.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Albini A, D’Agostini F, Giunciuglio D, et al. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer. 1995;61:121–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Jaafar H, Sharif SE, Murtey MD. Distinctive features of advancing breast cancer cells and interactions with surrounding stroma observed under the scanning electron microscope. Asian Pac J Cancer Prev. 2012;13:1305–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Rappa G, Green TM, Karbanová J, et al. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6(10):7970–91.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sethi S, Sarkar FH, Ahmed Q, et al. Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol. 2011;4(4):222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Krawczyk N, Meier-Stiegen F, Banys M, et al. Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. Biomed Res Int. 2014:415721.Google Scholar
  49. 49.
    Winter MJ, Nagelkerken B, Mertens AE, et al. Expression of ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res. 2003;285:50–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Maetzel D, Denzel S, Mack B, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11:162–71.CrossRefPubMedGoogle Scholar
  51. 51.
    Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G. Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet. 2000;356:1981–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Sceneay J, Liu MC, Chen A, et al. The antioxidant N-acetyl cysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PLoS One. 2013;8(6):e66388.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Halama A, Guerrouahen BS, Pasquier J, et al. Metabolic signatures differentiate ovarian from colon cancer cell lines. J Transl Med. 2015;13:223.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wen H, An YJ, Xu WJ, et al. Real-time monitoring of cancer cell metabolism and effects of an anticancer agent using 2D in-cell NMR spectroscopy. Angew Chem Int Ed Eng. 2015;54(18):5374–7.CrossRefGoogle Scholar
  56. 56.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lefort N, Brown A, Lloyd V, et al. 1H NMR metabolomics analysis of the effect of dichloroacetate and allopurinol on breast cancers. J Pharm Biomed Anal. 2014;93:77–85.CrossRefPubMedGoogle Scholar
  58. 58.
    Lu W, Pelicano H, Huang P. Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell. 2010;18:199–200.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Dhivya Sridaran
    • 1
  • Ganesan Ramamoorthi
    • 2
  • Rasool MahaboobKhan
    • 2
  • Premkumar Kumpati
    • 1
  1. 1.Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Immunopathology Laboratory, School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations