Advertisement

Tumor Biology

, Volume 37, Issue 10, pp 13111–13119 | Cite as

Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing

  • Zibo Li
  • Xinwu Guo
  • Lili Tang
  • Limin Peng
  • Ming Chen
  • Xipeng Luo
  • Shouman Wang
  • Zhi Xiao
  • Zhongping Deng
  • Lizhong Dai
  • Kun Xia
  • Jun Wang
Original Article

Abstract

Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients’ plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

Keywords

Breast cancer Plasma Methylation Cell-free DNA Next-generation sequencing Microfludic PCR 

Abbreviations

AUC

Area under the receiver operating characteristic curve

BSP

Bisulfite sequencing primer

cfDNA

Cell-free DNA

CI

Confidential interval

ctDNA

Circulating tumor DNA

ER

Estrogen receptor

HER2

Human epidermal growth factor receptor-2

NGS

Next-generation sequencing

OR

Odds ratio

PR

Progesterone receptor

ROC

Receiver operating characteristics

Notes

Acknowledgments

This work was supported in part by grants from the Natural Science Foundation of China (No. 81272296 and No. 81372228), the Scientific Project of China Hunan Provincial Science and Technology Department (No. 2012SK2013), and the Major Special Projects of the Science and Technology Bureau of Changsha, China (No. K1204017-31 and K1306011-31). Zibo Li was supported by the Hunan Province Postgraduate Student Scientific Innovation Project, China (No. CX2013B087).

Compliance with ethical standards

Ethical standards

We declare that the experiments performed in this study comply with the current laws of the People’s Republic of China.

Conflicts of interest

Xinwu Guo, Limin Peng, Ming Chen, Xipeng Luo, Zhongping Deng, and Lizhong Dai are employees of Sanway Gene Technology Inc.

Supplementary material

13277_2016_5190_MOESM1_ESM.doc (43 kb)
Online Resource Table S1 (DOC 43 kb)
13277_2016_5190_MOESM2_ESM.doc (31 kb)
Online Resource Table S2 (DOC 31 kb)
13277_2016_5190_MOESM3_ESM.doc (68 kb)
Online Resource Table S3 (DOC 67 kb)
13277_2016_5190_MOESM4_ESM.doc (81 kb)
Online Resource Table S4 (DOC 81 kb)
13277_2016_5190_MOESM5_ESM.doc (80 kb)
Online Resource Table S5 (DOC 79 kb)
13277_2016_5190_MOESM6_ESM.doc (38 kb)
Online Resource Table S6 (DOC 38 kb)
13277_2016_5190_MOESM7_ESM.doc (738 kb)
Online Resource Figure 1 (DOC 737 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, Chen WQ, Shao ZM, Goss PE. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89. doi: 10.1016/S1470-2045(13)70567-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016. doi: 10.3322/caac.21338.Google Scholar
  4. 4.
    Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One. 2011;6(1):e16080. doi: 10.1371/journal.pone.0016080.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Modern Pathol Off J US Can Acad Pathol Inc. 2013;26(4):465–84. doi: 10.1038/modpathol.2012.214.Google Scholar
  6. 6.
    Rhee JK, Kim K, Chae H, Evans J, Yan P, Zhang BT, Gray J, Spellman P, Huang TH, Nephew KP, Kim S. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer. Nucleic Acids Res. 2013;41(18):8464–74. doi: 10.1093/nar/gkt643.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–92. doi: 10.1038/nrg3270.CrossRefPubMedGoogle Scholar
  8. 8.
    Noehammer C, Pulverer W, Hassler MR, Hofner M, Wielscher M, Vierlinger K, Liloglou T, McCarthy D, Jensen TJ, Nygren A, Gohlke H, Trooskens G, Braspenning M, Van Criekinge W, Egger G, Weinhaeusel A. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics. 2014;6(6):603–22. doi: 10.2217/epi.14.43.CrossRefPubMedGoogle Scholar
  9. 9.
    Massihnia D, Perez A, Bazan V, Bronte G, Castiglia M, Fanale D, Barraco N, Cangemi A, Di Piazza F, Calo V, Rizzo S, Cicero G, Pantuso G, Russo A. A headlight on liquid biopsies: a challenging tool for breast cancer management. Tumour Biol J Int Soc Oncodev Biol Med. 2016. doi: 10.1007/s13277-016-4856-x.Google Scholar
  10. 10.
    Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. doi: 10.1038/nrclinonc.2013.110.CrossRefPubMedGoogle Scholar
  11. 11.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9. doi: 10.1038/cr.2014.44.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14(9):18925–58. doi: 10.3390/ijms140918925.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer. Breast Cancer Res: BCR. 2015;17(1):136. doi: 10.1186/s13058-015-0645-5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C, Lyman JP, de Brot M, Ingle JN, Boughey J, McGuire K, King TA, Carey LA, Cope L, Wolff AC, Sukumar S. Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014;74(8):2160–70. doi: 10.1158/0008-5472.CAN-13-3392.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guerrero-Preston R, Hadar T, Ostrow KL, Soudry E, Echenique M, Ili-Gangas C, Perez G, Perez J, Brebi-Mieville P, Deschamps J, Morales L, Bayona M, Sidransky D, Matta J. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep. 2014;32(2):505–12. doi: 10.3892/or.2014.3262.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, Chan SL, Chan WC, Hui DS, Ng SS, Chan HL, Wong CS, Ma BB, Chan AT, Lai PB, Sun H, Chiu RW, Lo YM. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8. doi: 10.1073/pnas.1313995110.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vaca-Paniagua F, Oliver J, Nogueira da Costa A, Merle P, McKay J, Herceg Z, Holmila R. Targeted deep DNA methylation analysis of circulating cell-free DNA in plasma using massively parallel semiconductor sequencing. Epigenomics. 2015;7(3):353–62. doi: 10.2217/epi.14.94.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Z, Guo X, Wu Y, Li S, Yan J, Peng L, Xiao Z, Wang S, Deng Z, Dai L, Yi W, Xia K, Tang L, Wang J. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Res Treat. 2015;149(3):767–79. doi: 10.1007/s10549-015-3276-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kampfrath T, Levinson SS. Brief critical review: statistical assessment of biomarker performance. Clin Chim Acta Int J Clin Chem. 2013;419:102–7. doi: 10.1016/j.cca.2013.02.006.CrossRefGoogle Scholar
  20. 20.
    Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, Mo Q, Huang S, Hilsenbeck SG, Edwards DP, Zhang X, Rosen JM. Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res: BCR. 2015;17:141. doi: 10.1186/s13058-015-0649-1.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Voss M, Paterson J, Kelsall IR, Martin-Granados C, Hastie CJ, Peggie MW, Cohen PT. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal. 2011;23(1):114–24. doi: 10.1016/j.cellsig.2010.08.010.CrossRefPubMedGoogle Scholar
  22. 22.
    Rodenhiser DI, Andrews J, Kennette W, Sadikovic B, Mendlowitz A, Tuck AB, Chambers AF. Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res: BCR. 2008;10(4):R62. doi: 10.1186/bcr2121.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rauscher GH, Kresovich JK, Poulin M, Yan L, Macias V, Mahmoud AM, Al-Alem U, Kajdacsy-Balla A, Wiley EL, Tonetti D, Ehrlich M. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer. 2015;15:816. doi: 10.1186/s12885-015-1777-9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Scartozzi M, Bearzi I, Mandolesi A, Giampieri R, Faloppi L, Galizia E, Loupakis F, Zaniboni A, Zorzi F, Biscotti T, Labianca R, Falcone A, Cascinu S. Epidermal growth factor receptor (EGFR) gene promoter methylation and cetuximab treatment in colorectal cancer patients. Br J Cancer. 2011;104(11):1786–90. doi: 10.1038/bjc.2011.161.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Montero AJ, Diaz-Montero CM, Mao L, Youssef EM, Estecio M, Shen L, Issa JP. Epigenetic inactivation of EGFR by CpG island hypermethylation in cancer. Cancer Biol Ther. 2006;5(11):1494–501.CrossRefPubMedGoogle Scholar
  26. 26.
    Weng X, Zhang H, Ye J, Kan M, Liu F, Wang T, Deng J, Tan Y, He L, Liu Y. Hypermethylated epidermal growth factor receptor (EGFR) promoter is associated with gastric cancer. Sci Report. 2015;5:10154. doi: 10.1038/srep10154.CrossRefGoogle Scholar
  27. 27.
    Varley KE, Mitra RD. Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res. 2010;20(9):1279–87. doi: 10.1101/gr.101212.109.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Danese E, Minicozzi AM, Benati M, Montagnana M, Paviati E, Salvagno GL, Lima-Oliveira G, Gusella M, Pasini F, Lippi G, Guidi GC. Comparison of genetic and epigenetic alterations of primary tumors and matched plasma samples in patients with colorectal cancer. PLoS One. 2015;10(5):e0126417. doi: 10.1371/journal.pone.0126417.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fu D, Ren C, Tan H, Wei J, Zhu Y, He C, Shao W, Zhang J. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine. 2015;94(11):e637. doi: 10.1097/MD.0000000000000637.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knuchel R, Dahl E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res: BCR. 2013;15(1):R4. doi: 10.1186/bcr3375.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Deng J, Liang H, Ying G, Dong Q, Zhang L, Yu J, Fan D, Hao X. Clinical significance of the methylated cytosine-phosphate-guanine sites of protocadherin-10 promoter for evaluating the prognosis of gastric cancer. J Am Coll Surg. 2014;219(5):904–13. doi: 10.1016/j.jamcollsurg.2014.06.014.CrossRefPubMedGoogle Scholar
  32. 32.
    Warton K, Lin V, Navin T, Armstrong NJ, Kaplan W, Ying K, Gloss B, Mangs H, Nair SS, Hacker NF, Sutherland RL, Clark SJ, Samimi G. Methylation-capture and next-generation sequencing of free circulating DNA from human plasma. BMC Genomics. 2014;15:476. doi: 10.1186/1471-2164-15-476.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Redshaw N, Huggett JF, Taylor MS, Foy CA, Devonshire AS. Quantification of epigenetic biomarkers: an evaluation of established and emerging methods for DNA methylation analysis. BMC Genomics. 2014;15:1174. doi: 10.1186/1471-2164-15-1174.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yang R, Pfutze K, Zucknick M, Sutter C, Wappenschmidt B, Marme F, Qu B, Cuk K, Engel C, Schott S, Schneeweiss A, Brenner H, Claus R, Plass C, Bugert P, Hoth M, Sohn C, Schmutzler R, Bartram CR, Burwinkel B. DNA methylation array analyses identified breast cancer-associated HYAL2 methylation in peripheral blood. Int J Cancer J Int Cancer. 2015;136(8):1845–55. doi: 10.1002/ijc.29205.CrossRefGoogle Scholar
  35. 35.
    Harrison K, Hoad G, Scott P, Simpson L, Horgan GW, Smyth E, Heys SD, Haggarty P. Breast cancer risk and imprinting methylation in blood. Clin Epigenetics. 2015;7(1):92. doi: 10.1186/s13148-015-0125-x.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jing F, Yuping W, Yong C, Jie L, Jun L, Xuanbing T, Lihua H. CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2010;31(4):321–31. doi: 10.1007/s13277-010-0040-x.CrossRefGoogle Scholar
  37. 37.
    Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, Zeng X, Li D, Wang Q, Xiao Y, Liu C, Xiao Q, Chen L, Zhu X, Xing X, Li Z, Zhang S, Zhang Z, Ma L, Wang E, Zhuang Z, Zheng Y, Chen W. CpG site-specific hypermethylation of p16INK4alpha in peripheral blood lymphocytes of PAH-exposed workers. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2012;21(1):182–90. doi: 10.1158/1055-9965.EPI-11-0784.CrossRefGoogle Scholar
  38. 38.
    Moskalev EA, Jandaghi P, Fallah M, Manoochehri M, Botla SK, Kolychev OV, Nikitin EA, Bubnov VV, von Knebel DM, Strobel O, Hackert T, Buchler MW, Giese N, Bauer A, Muley T, Warth A, Schirmacher P, Haller F, Hoheisel JD, Riazalhosseini Y. GHSR DNA hypermethylation is a common epigenetic alteration of high diagnostic value in a broad spectrum of cancers. Oncotarget. 2015;6(6):4418–27. doi: 10.18632/oncotarget.2759.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sang Q, Li X, Wang H, Wang H, Zhang S, Feng R, Xu Y, Li Q, Zhao X, Xing Q, Jin L, He L, Wang L. Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome. PLoS One. 2014;9(2):e88013. doi: 10.1371/journal.pone.0088013.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang D, Cui W, Wu X, Qu Y, Wang N, Shi B, Hou P. RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am J Cancer Res. 2014;4(6):725–37.PubMedPubMedCentralGoogle Scholar
  41. 41.
    van Vlodrop IJ, Niessen HE, Derks S, Baldewijns MM, van Criekinge W, Herman JG, van Engeland M. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(13):4225–31. doi: 10.1158/1078-0432.CCR-10-3394.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Zibo Li
    • 1
  • Xinwu Guo
    • 2
  • Lili Tang
    • 3
  • Limin Peng
    • 2
  • Ming Chen
    • 2
  • Xipeng Luo
    • 2
  • Shouman Wang
    • 3
  • Zhi Xiao
    • 3
  • Zhongping Deng
    • 2
    • 4
    • 5
  • Lizhong Dai
    • 2
    • 4
    • 5
  • Kun Xia
    • 1
  • Jun Wang
    • 1
  1. 1.The State Key Laboratory of Medical Genetics and School of Life SciencesCentral South UniversityChangshaChina
  2. 2.Sanway Gene Technology Inc.ChangshaChina
  3. 3.Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaChina
  4. 4.Research Center for Technologies in Nucleic Acid-Based DiagnosticsChangshaChina
  5. 5.Research Center for Technologies in Nucleic Acid-Based Diagnostics and TherapeuticsChangshaChina

Personalised recommendations