Advertisement

Tumor Biology

, Volume 37, Issue 9, pp 12755–12766 | Cite as

Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma

  • Somsak Likhitrattanapisal
  • Jaitip Tipanee
  • Tavan Janvilisri
Original Article

Abstract

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the members of hepatobiliary diseases. Both types of cancer often exert high levels of similarity in terms of phenotypic characteristics, thus leading to difficulties in HCC and CCA differential diagnoses. In this study, a transcriptome meta-analysis was performed on HCC and CCA microarray data to identify differential transcriptome networks and potential biomarkers for HCC and CCA. Raw data from nine gene expression profiling datasets, consisting of 1,185 samples in total, were methodologically compiled and analyzed. To evaluate differentially expressed (DE) genes in HCC and CCA, the levels of gene expression were compared between cancer and its normal counterparts (i.e., HCC versus normal liver and CCA versus normal bile duct) using t test (P < 0.05) and k-fold validation. A total of 226 DE genes were specific to HCC, 249 DE genes specific to CCA, and 41 DE genes in both HCC and CCA. Gene ontology and pathway enrichment analyses revealed different patterns between functional transcriptome networks of HCC and CCA. Cell cycle and glycolysis/gluconeogenesis pathways were exclusively dysregulated in HCC whereas complement and coagulation cascades as well as glycine, serine, and threonine metabolism were prodominantly differentially expressed in CCA. Our meta-analysis revealed distinct dysregulation in transcriptome networks between HCC and CCA. Certain genes in these networks were discussed in the context of HCC and CCA transition, unique characteristics of HCC and CCA, and their potentials as HCC and CCA differential biomarkers.

Keywords

Hepatocellular carcinoma Cholangiocarcinoma Microarray Biomarker Meta-analysis 

Abbreviations

20-HETE

20-Epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid

-OH-E1

4-Hydroxyestrone

CCA

Cholangiocarcinoma

DE

Differentially expressed

EMT

Epithelial-mesenchymal transition process

GO

Gene ontology

HCC

Hepatocellular carcinoma

HPA

Human protein atlas project

KEGG

Kyoto encyclopedia of genes and genomes

NL

Normal liver

NB

Normal bile duct

Notes

Acknowledgments

This work is supported by Medical Research Council (MRC) through UK-Thailand Research Collaborations (Newton Fund), the Thailand Research Fund (grant no. DBG5980006), and Mahidol University to TJ. SL is a recipient of the Development and Promotion of Science and Technology Talented Project (DPST) scholarship. JT is a recipient of the Science Achievement Scholarship of Thailand (SAST).

Compliance with ethical standards

Conflicts of interest

None.

Supplementary material

13277_2016_5186_MOESM1_ESM.docx (30 kb)
Table S1 A list of differentially expressed genes in hepatocellular carcinoma compared to normal liver. (DOCX 29 kb)
13277_2016_5186_MOESM2_ESM.docx (35 kb)
Table S2 A list of differentially expressed genes in cholangiocarcinoma compared to normal bile duct. (DOCX 34 kb)

References

  1. 1.
    McGlynn KA, Tarone RE, El-Serag HB. A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomark Prev. 2006;15:1198–203.CrossRefGoogle Scholar
  2. 2.
    Gomaa A-I, Khan S-A, Toledano M-B, Waked I, Taylor-Robinson S-D. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14:4300–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bragazzi MC, Cardinale V, Carpino G, Venere R, Semeraro R, Gentile R, et al. Cholangiocarcinoma: epidemiology and risk factors. Transl Gastrointest Cancer. 2011;1:21–32.Google Scholar
  4. 4.
    Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24:115–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, et al. Cholangiocarcinoma: update and future perspectives. Dig Liver Dis. 2010;42:253–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Woo HG, Lee J-H, Yoon J-H, Kim CY, Lee H-S, Jang JJ, et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res. 2010;70:3034–41.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seok JY, Na DC, Woo HG, Roncalli M, Kwon SM, Yoo JE, et al. A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. Hepatology. 2012;55:1776–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy. Biomark Res. 2013;1:10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Radwan NA, Ahmed NS. The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1. Diagn Pathol. 2012;7:149.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Seeree P, Pearngam P, Kumkate S, Janvilisri T. An omics perspective on molecular biomarkers for diagnosis, prognosis, and therapeutics of cholangiocarcinoma. Int J Gen. 2015;2015:179528.Google Scholar
  11. 11.
    Tulalamba W, Larbcharoensub N, Sirachainan E, Tantiwetrueangdet A, Janvilisri T. Transcriptome meta-analysis reveals dysregulated pathways in nasopharyngeal carcinoma. Tumour Biol. 2015;36:5931–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Xue T-C, Zhang B-H, Ye S-L, Ren Z-G. Differentially expressed gene profiles of intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and combined hepatocellular-cholangiocarcinoma by integrated microarray analysis. Tumor Biol. 2015;36:5891–9.CrossRefGoogle Scholar
  13. 13.
    Coulouarn C, Cavard C, Rubbia-Brandt L, Audebourg A, Dumont F, Jacques S, et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways. Carcinogenesis. 2012;33:1791–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Roessler S, Jia H-L, Budhu A, Forgues M, Ye Q-H, Lee J-S, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim SM, Leem S-H, Chu I-S, Park Y-Y, Kim SC, Kim S-B, et al. Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology. 2012;55:1443–52.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144:829–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Boyault S, Rickman DS, de Reyniès A, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021–31.e15.CrossRefPubMedGoogle Scholar
  19. 19.
    Woo HG, Park ES, Cheon JH, Kim JH, Lee J-S, Park BJ, et al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin Cancer Res. 2008;14:2056–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Oishi N, Kumar MR, Roessler S, Ji J, Forgues M, Budhu A, et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology. 2012;56:1792–803.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68:6779–88.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, et al. Evidence based selection of housekeeping genes. PLoS One. 2007;2:e898.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–8.PubMedGoogle Scholar
  24. 24.
    Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefPubMedGoogle Scholar
  28. 28.
    Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health. 2007;30:5–13.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mezey E, Holt PR. The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp Mol Pathol. 1971;15:148–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127:S87–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol. 2012;14:1203–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Cotoi CG, Khorsandi SE, Pleşea IE, Quaglia A. Whole-genome DASL gene expression profiling of hepatocellular carcinoma sub-populations isolated by laser microdissection on formalin-fixed and paraffin-embedded liver tissue samples. Romanian J Morphol Embryol. 2012;53:893–902.Google Scholar
  33. 33.
    Chaerkady R, Harsha HC, Nalli A, Gucek M, Vivekanandan P, Akhtar J, et al. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res. 2008;7:4289–98.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kraiklang R, Pairojkul C, Khuntikeo N, Imtawil K, Wongkham S, Wongkham C. A novel predictive equation for potential diagnosis of cholangiocarcinoma. PLoS One. 2014;9:e89337.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ben-Menachem T. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol. 2007;19:615–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Nakajima M. Smoking behavior and related cancers: the role of CYP2A6 polymorphisms. Curr Opin Mol Ther. 2007;9:538–44.PubMedGoogle Scholar
  37. 37.
    Yamazaki H, Inui Y, Yun CH, Guengerich FP, Shimada T. Cytochrome P450 2E1 and 2 A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis. 1992;13:1789–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology. 1998;27:427–32.CrossRefPubMedGoogle Scholar
  39. 39.
    Satarug S, Lang MA, Yongvanit P, Sithithaworn P, Mairiang E, Mairiang P, et al. Induction of cytochrome P450 2 A6 expression in humans by the carcinogenic parasite infection, Opisthorchiasis viverrini. Cancer Epidemiol Biomark Prev. 1996;5:795–800.Google Scholar
  40. 40.
    Powell PK, Wolf I, Jin R, Lasker JM. Metabolism of arachidonic acid to 20-hydroxy-5,8,11, 14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11. J Pharmacol Exp Ther. 1998;285:1327–36.PubMedGoogle Scholar
  41. 41.
    Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, et al. 20-hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther. 2008;324:103–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Iizuka N, Oka M, Hamamoto Y, Mori N, Tamesa T, Tangoku A, et al. Altered levels of cytochrome P450 genes in hepatitis B or C virus-infected liver identified by oligonucleotide microarray. Cancer Genomics Proteomics. 2004;1:53–8.Google Scholar
  43. 43.
    Tanaka S, Mogushi K, Yasen M, Ban D, Noguchi N, Irie T, et al. Oxidative stress pathways in noncancerous human liver tissue to predict hepatocellular carcinoma recurrence: a prospective, multicenter study. Hepatology. 2011;54:1273–81.CrossRefPubMedGoogle Scholar
  44. 44.
    Turgeon D, Carrier JS, Lévesque E, Hum DW, Bélanger A. Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology. 2001;142:778–87.PubMedGoogle Scholar
  45. 45.
    Ritter JK, Chen F, Sheen YY, Lubet RA, Owens IS. Two human liver cDNAs encode UDP-glucuronosyltransferases with 2 log differences in activity toward parallel substrates including hyodeoxycholic acid and certain estrogen derivatives. Biochemistry (Mosc). 1992;31:3409–14.CrossRefGoogle Scholar
  46. 46.
    Getoff N, Gerschpacher M, Hartmann J, Huber JC, Schittl H, Quint RM. The 4-hydroxyestrone: electron emission, formation of secondary metabolites and mechanisms of carcinogenesis. J Photochem Photobiol B. 2010;98:20–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos. 2008;36:1461–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Gestl SA, Green MD, Shearer DA, Frauenhoffer E, Tephly TR, Weisz J. Expression of UGT2B7, a UDP-glucuronosyltransferase implicated in the metabolism of 4-hydroxyestrone and all-trans retinoic acid, in normal human breast parenchyma and in invasive and in situ breast cancers. Am J Pathol. 2002;160:1467–79.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Janss AJ, Maity A, Tang CB, Muschel RJ, McKenna WG, Sutton L, et al. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin. Neuro-Oncol. 2001;3:11–21.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Weng L, Du J, Zhou Q, Cheng B, Li J, Zhang D, et al. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. Mol Cancer. 2012;11:39.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Duong FHT, Christen V, Lin S, Heim MH. Hepatitis C virus-induced up-regulation of protein phosphatase 2 A inhibits histone modification and DNA damage repair. Hepatology. 2010;51:741–51.PubMedGoogle Scholar
  52. 52.
    Maiorano D, Lutzmann M, Méchali M. MCM proteins and DNA replication. Curr Opin Cell Biol. 2006;18:130–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Kearsey SE, Maiorano D, Holmes EC, Todorov IT. The role of MCM proteins in the cell cycle control of genome duplication. BioEssays. 1996;18:183–90.CrossRefPubMedGoogle Scholar
  54. 54.
    Qin L-X, Tang Z-Y. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol. 2002;8:385–92.Google Scholar
  55. 55.
    Marshall AE, Rushbrook SM, Vowler SL, Palmer CR, Davies RJ, Gibbs P, et al. Tumor recurrence following liver transplantation for hepatocellular carcinoma: role of tumor proliferation status. Liver Transpl. 2010;16:279–88.CrossRefPubMedGoogle Scholar
  56. 56.
    Chen M, Zhang J, Li N, Qian Z, Zhu M, Li Q, et al. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer. PLoS One. 2011;6:e25564.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li L, Lian B, Li C, Li W, Li J, Zhang Y, et al. Integrative analysis of transcriptional regulatory network and copy number variation in intrahepatic cholangiocarcinoma. PLoS One. 2014;9:e98653.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Henkel C, Schwamborn K, Zimmermann HW, Tacke F, Kühnen E, Odenthal M, et al. From proteomic multimarker profiling to interesting proteins: thymosin-β4 and kininogen-1 as new potential biomarkers for inflammatory hepatic lesions. J Cell Mol Med. 2011;15:2176–88.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bior AD, Pixley RA, Colman RW. Domain 5 of kininogen inhibits proliferation of human colon cancer cell line (HCT-116) by interfering with G1/S in the cell cycle. J Thromb Haemost. 2007;5:403–11.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang X, Xiao Z, Liu X, Du L, Wang L, Wang S, et al. The potential role of ORM2 in the development of colorectal cancer. PLoS One. 2012;7:e31868.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bambace NM, Holmes CE. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9:237–49.CrossRefPubMedGoogle Scholar
  62. 62.
    Akarasereenont P, Al E. Cholangiocarcinoma cell induced platelet aggregation via activation of thrombin and cyclooxygenase. Siriraj Med J. 2009;61:8–12.Google Scholar
  63. 63.
    Yang Y, Hu D, Wang L, Liang C, Hu X, Xu J, et al. Comparison of two serpins of Clonorchis sinensis by bioinformatics, expression, and localization in metacercaria. Pathog Glob Health. 2014;108:179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sriwanitchrak P, Viyanant V, Chaijaroenkul W, Srivatanakul P, Gram HR, Eursiddhichai V, et al. Proteomics analysis and evaluation of biomarkers for detection of cholangiocarcinoma. Asian Pac J Cancer Prev. 2011;12:1503–10.PubMedGoogle Scholar
  65. 65.
    Sandanayake NS, Sinclair J, Andreola F, Chapman MH, Camuzeaux S, Webster GJ, et al. PWE-055 characterisation of serum proteins in biliary tract cancer, primary sclerosing cholangitis and immunoglobulin G4-associated cholangitis using 2-dimensional difference gel electrophoresis and tandem mass spectrometry. Gut. 2010;59:A106.Google Scholar
  66. 66.
    Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitrc P, Pairojkul C, Wongkham S, Petmitrb S. Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev. 2013;14:557–63.CrossRefPubMedGoogle Scholar
  67. 67.
    Valladares-Ayerbes M, Díaz-Prado S, Reboredo M, Medina V, Lorenzo-Patiño MJ, Iglesias-Díaz P, et al. Evaluation of Plakophilin-3 mRNA as a biomarker for detection of circulating tumor cells in gastrointestinal cancer patients. Cancer Epidemiol Biomark Prev. 2010;19:1432–40.CrossRefGoogle Scholar
  68. 68.
    Jackstadt R, Röh S, Neumann J, Jung P, Hoffmann R, Horst D, et al. AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer. J Exp Med. 2013;210:1331–50.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang W, Zhang J, Zhan X, Lin T, Yang M, Hu J, et al. SOX4 is associated with poor prognosis in cholangiocarcinoma. Biochem Biophys Res Commun. 2014;452:614–21.CrossRefPubMedGoogle Scholar
  70. 70.
    Hass HG, Nehls O, Jobst J, Frilling A, Vogel U, Kaiser S. Identification of osteopontin as the most consistently over-expressed gene in intrahepatic cholangiocarcinoma: detection by oligonucleotide microarray and real-time PCR analysis. World J Gastroenterol. 2008;14:2501–10.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Matsui T, Matsukawa Y, Sakai T, Nakamura K, Aoike A, Kawai K. Effect of ammonia on cell-cycle progression of human gastric cancer cells. Eur J Gastroenterol Hepatol. 1995;7(Suppl 1):S79–81.PubMedGoogle Scholar
  72. 72.
    Snell K, Natsumeda Y, Eble JN, Glover JL, Weber G. Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br J Cancer. 1988;57:87–90.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Limoli CL, Giedzinski E. Induction of chromosomal instability by chronic oxidative stress. Neoplasia. 2003;5:339–46.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci. 2011;1:5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yin P, Zhao C, Li Z, Mei C, Yao W, Liu Y, et al. Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Cell Signal. 2012;24:1229–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Somsak Likhitrattanapisal
    • 1
  • Jaitip Tipanee
    • 2
  • Tavan Janvilisri
    • 2
  1. 1.Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations