Tumor Biology

, Volume 37, Issue 9, pp 12627–12633 | Cite as

Expression profiles of miR-29c, miR-200b and miR-375 in tumour and tumour-adjacent tissues of head and neck cancers

  • Kristyna Hudcova
  • Martina Raudenska
  • Jaromir Gumulec
  • Hana Binkova
  • Zuzana Horakova
  • Rom Kostrica
  • Petr Babula
  • Vojtech Adam
  • Michal Masarik
Original Article

Abstract

Altered expression of microRNAs (miRNAs) has been shown in many types of malignancies including the head and neck squamous cell carcinoma (HNSCC). Although there are many new and innovative approaches in the treatment of HNSCC, a clear marker of this disease is still missing. Three candidate miRNAs (miR-29c-3p, miR-200b-5p and miR-375-3p) were studied in connection with HNSCC using quantitative real-time PCR expression levels in 42 tissue samples of HNSCC patients and histologically normal tumour-adjacent tissue samples of these patients. Primary HNSCC carcinoma tissues can be distinguished from histologically normal-matched noncancerous tumour-adjacent tissues based on hsa-miR-375-3p expression (sensitivity 87.5 %, specificity 65 %). Additionally, a significant decrease of hsa-miR-200b-5p expression was revealed in tumour-adjacent tissue samples of patients with node positivity. Lower expression of hsa-miR-200b-5p and hsa-miR-29c-3p in HNSCC tumour tissue was associated with higher tumour grade. Consequently, survival analysis was performed. Lower expression of hsa-miR-29c-3p in tumour-adjacent tissue was associated with worse overall and disease-specific survivals. Lower expression of miR-29c-3p in tumourous tissue was associated with worse relapse-free survival. hsa-miR-375-3p seems to be a relatively promising diagnostic marker in HNSCC but is not suitable for prognosis of patients. Furthermore, this study highlighted the importance of histologically normal tumour-adjacent tissue in HNSCC progress (significant decrease of hsa-miR-200b-5p expression in tumour-adjacent tissue of patients with node positivity and low expression of hsa-miR-29c-3p in HNSCC tumour-adjacent tissue associated with worse prognosis).

Keywords

Head and neck neoplasms Carcinoma, squamous cell of head and neck MicroRNAs Biomarkers, tumour Survival Proportional hazards models 

Notes

Acknowledgments

This work was supported by the Czech Science Foundation GA16-12454S, by the Ministry of Health of the Czech Republic, grant no. 16-29835A, by Specific University Research grants—MUNI/A/1426/2015 and MUNI/A/1365/2015—provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2016 and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. doi: 10.1002/ijc.25516.CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol. 2005;86(6):347–63. doi: 10.1111/j.0959-9673.2005.00447.x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Young D, Xiao CC, Murphy B, Moore M, Fakhry C, Day TA. Increase in head and neck cancer in younger patients due to human papillomavirus (HPV). Oral Oncol. 2015;51(8):727–30. doi: 10.1016/j.oraloncology.2015.03.015.CrossRefPubMedGoogle Scholar
  4. 4.
    Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Research International. 2015:125094. doi: 10.1155/2015/125094.
  5. 5.
    Masood Y, Kqueen CY, Rajadurai P. Role of miRNA in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther. 2015;15(2):183–97. doi: 10.1586/14737140.2015.978294.CrossRefPubMedGoogle Scholar
  6. 6.
    Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10(2):141–8. doi: 10.1038/nrm2619.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmitt MJ, Margue C, Behrmann I, Kreis S. miRNA-29: a microRNA family with tumor-suppressing and immune-modulating properties. Curr Mol Med. 2013;13(4):572–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33(20):2557–67. doi: 10.1038/onc.2013.216.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu N, Tang L-L, Sun Y, Cui R-X, Wang H-Y, Huang B-J, et al. MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Lett. 2013;329(2):181–8. doi: 10.1016/j.canlet.2012.10.032.CrossRefPubMedGoogle Scholar
  10. 10.
    Zou YK, Li JW, Chen ZY, Li XW, Zheng SG, Yi D, et al. miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis. 2015;36(6):676–84. doi: 10.1093/carcin/bgv027.CrossRefPubMedGoogle Scholar
  11. 11.
    Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A. 2008;105(15):5874–8. doi: 10.1073/pnas.0801130105.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jiang H, Zhang G, Wu J-H, Jiang C-P. Diverse roles of miR-29 in cancer (review). Oncol Rep. 2014;31(4):1509–16. doi: 10.3892/or.2014.3036.PubMedGoogle Scholar
  13. 13.
    Diaz-Martin J, Diaz-Lopez A, Moreno-Bueno G, Castilla MA, Rosa-Rosa JM, Cano A, et al. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J Pathol. 2014;232(3):319–29. doi: 10.1002/path.4289.CrossRefPubMedGoogle Scholar
  14. 14.
    Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, et al. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6(18):16638–52. doi: 10.18632/oncotarget.3184.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hui ABY, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, et al. Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010;16(4):1129–39. doi: 10.1158/1078-0432.ccr-09-2166.CrossRefPubMedGoogle Scholar
  16. 16.
    Jung HM, Phillips BL, Chan EKL. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3 zeta. Mol Cancer. 2014;13:80. doi: 10.1186/1476-4598-13-80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harris T, Jimenez L, Kawachi N, Fan J-B, Chen J, Belbin T, et al. Low-level expression of miR-375 correlates with poor outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas. Am J Pathol. 2012;180(3):917–28. doi: 10.1016/j.ajpath.2011.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862. doi: 10.1371/journal.pone.0051862.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33. doi: 10.1038/nrc3932.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nothnick WB, Healy C. Estrogen induces distinct patterns of MicroRNA expression within the mouse uterus. Reprod Sci. 2010;17(11):987–94. doi: 10.1177/1933719110377472.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Klinge CM. Estrogen regulation of microRNA expression. Curr Genomics. 2009;10(3):169–83.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jung HM, Patel RS, Phillips BL, Wang H, Cohen DM, Reinhold WC, et al. Tumor suppressor miR-375 regulates MYC expression via repression of CIP2A coding sequence through multiple miRNA-mRNA interactions. Mol Biol Cell. 2013;24(11):1638–48. doi: 10.1091/mbc.E12-12-0891.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jung HM, Benarroch Y, Chan EK. Anti-cancer drugs reactivate tumor suppressor miR-375 expression in tongue cancer cells. J Cell Biochem. 2015;116(5):836–43. doi: 10.1002/jcb.25039.CrossRefPubMedGoogle Scholar
  24. 24.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10. doi: 10.1073/pnas.0707628104.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Plaisier CL, Pan M, Baliga NS. A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res. 2012;22(11):2302–14. doi: 10.1101/gr.133991.111.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park S-Y, Lee JH, Ha M, Nam J-W, Kim VN. miR-29 miRNAs activate p53 by targeting p85a and CDC42. Nat Struct Mol Biol. 2009;16(1):23–9. doi: 10.1038/nsmb.1533.CrossRefPubMedGoogle Scholar
  27. 27.
    Tang X, Hou Y, Yang G, Wang X, Tang S, Du YE, et al. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 2016;23(1):132–45. doi: 10.1038/cdd.2015.78.CrossRefPubMedGoogle Scholar
  28. 28.
    Brozovic A, Duran GE, Wang YC, Francisco EB, Sikic BI. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells. Mol Oncol. 2015;9(8):1678–93. doi: 10.1016/j.molonc.2015.04.015.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shen Y, Wang P, Li Y, Ye F, Wang F, Wan X, et al. miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer. Br J Cancer. 2013;109(1):92–9. doi: 10.1038/bjc.2013.308.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wiemer EAC. Stressed tumor cell, chemosensitized cancer. Nat Med. 2011;17(12):1552–4. doi: 10.1038/nm.2593.CrossRefPubMedGoogle Scholar
  31. 31.
    Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, et al. Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One. 2012;7(11):e50459. doi: 10.1371/journal.pone.0050459.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Matamala N, Teresa Vargas M, Gonzalez-Campora R, Minambres R, Ignacio Arias J, Menendez P, et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin Chem. 2015;61(8):1098–106. doi: 10.1373/clinchem.2015.238691.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Kristyna Hudcova
    • 1
    • 2
    • 3
  • Martina Raudenska
    • 1
    • 2
    • 3
  • Jaromir Gumulec
    • 1
    • 2
    • 3
  • Hana Binkova
    • 4
  • Zuzana Horakova
    • 4
  • Rom Kostrica
    • 4
  • Petr Babula
    • 1
  • Vojtech Adam
    • 3
    • 5
  • Michal Masarik
    • 1
    • 2
    • 3
  1. 1.Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Pathological Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  3. 3.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  4. 4.Department of Otorhinolaryngology and Head and Neck SurgerySt. Anne’s Faculty HospitalBrnoCzech Republic
  5. 5.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic

Personalised recommendations