Advertisement

Tumor Biology

, Volume 37, Issue 9, pp 12713–12723 | Cite as

4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines

  • Qin Yang
  • Min Zhu
  • Zi Wang
  • Hui Li
  • Weihua Zhou
  • Xiaojuan Xiao
  • Bin Zhang
  • Weixin Hu
  • Jing Liu
Original Article

Abstract

The membrane-cytoskeletal protein 4.1N has recently been proposed as a tumor suppressor in a number of cancers of epithelial origin, including non-small-cell lung cancer (NSCLC). However, the molecular mechanism associated with 4.1N tumor suppression remains has not been thoroughly characterized. In this study, 4.1N was shown to directly interact with the lipid raft marker flotillin-1 through its FERM and U2 domains in several different NSCLC cell lines using immunoprecipitation, co-immunoprecipitation and pull-down assays. Moreover, 4.1N silencing/overexpression experiments in paired 95C/95D cells that are of homologous origin but varying endogenous 4.1N expression (high expression in 95C cells, low expression in 95D cells) indicated that 4.1N is involved in the suppression of cell proliferation and migration through a flotillin-1/β-catenin/Wnt pathway. Taken together, the findings of this study help to elucidate the novel tumor suppressor role of 4.1N in NSCLC.

Keywords

4.1N, non-small cell lung cancer (NSCLC) Flotillin-1 Flotillin-1/β-catenin/Wnt pathway 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China Nos. 81301997, 81301710, and 81372538.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A, Cancer statistics. CA Cancer J Clin. 2012;62(1):10–29. doi: 10.3322/caac.20138. CrossRefPubMedGoogle Scholar
  2. 2.
    Guo P, Huang ZL, Yu P, Li K. Trends in cancer mortality in China: an update. Ann Oncol. 2012;23(10):2755–62. doi: 10.1093/annonc/mds069. CrossRefPubMedGoogle Scholar
  3. 3.
    Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94. doi: 10.4065/83.5.584. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13(Suppl 1):5–13. doi: 10.1634/theoncologist.13-S1-5. CrossRefPubMedGoogle Scholar
  5. 5.
    Diakowski W, Grzybek M, Sikorski AF. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem Cytobiol. 2006;44(4):231–48.PubMedGoogle Scholar
  6. 6.
    Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res. 1999;59(1):35–43.PubMedGoogle Scholar
  7. 7.
    Gutmann DH, Donahoe J, Perry A, Lemke N, Gorse K, Kittiniyom K, et al. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet. 2000;9(10):1495–500.CrossRefPubMedGoogle Scholar
  8. 8.
    Robb VA, Li W, Gascard P, Perry A, Mohandas N, Gutmann DH. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis. Neurobiol Dis. 2003;13(3):191–202.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, et al. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci. 2014;71(24):4815–30. doi: 10.1007/s00018-014-1707-z. CrossRefPubMedGoogle Scholar
  10. 10.
    Sun CX, Robb VA, Gutmann DH. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci. 2002;115(Pt 21):3991–4000.CrossRefPubMedGoogle Scholar
  11. 11.
    Kittiniyom K, Gorse KM, Dalbegue F, Lichy JH, Taubenberger JK, Newsham IF. Allelic loss on chromosome band 18p11.3 occurs early and reveals heterogeneity in breast cancer progression. Breast Cancer Res 2001;3(3):192–198.Google Scholar
  12. 12.
    Ohno N, Terada N, Murata S, Yamakawa H, Newsham IF, Katoh R, et al. Immunolocalization of protein 4.1B/DAL-1 during neoplastic transformation of mouse and human intestinal epithelium. Histochem Cell Biol. 2004;122(6):579–86. doi: 10.1007/s00418-004-0716-7. CrossRefPubMedGoogle Scholar
  13. 13.
    Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Christofori G, et al. Protein 4.1B in mouse islets of Langerhans and beta-cell tumorigenesis. Histochem Cell Biol. 2003;120(4):277–83. doi: 10.1007/s00418-003-0573-9. CrossRefPubMedGoogle Scholar
  14. 14.
    Charboneau AL, Singh V, Yu T, Newsham IF. Suppression of growth and increased cellular attachment after expression of DAL-1 in MCF-7 breast cancer cells. Int J Cancer. 2002;100(2):181–8. doi: 10.1002/ijc.10470. CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Z, Zhang J, Zeng Y, Sun S, Zhang J, Zhang B, Zhu M, Ouyang R, Ma B, Ye M, An X, Liu J. Knockout of 4.1B triggers malignant transformation in SV40T-immortalized mouse embryo fibroblast cells. Mol Carcinog. 2016; doi: 10.1002/mc.22515.
  16. 16.
    Xi CG, Ren CX, Hu A, Lin J, Yao Q, Wang Y, et al. Defective expression of protein 4.1N is correlated to tumor progression, aggressive behaviors and chemotherapy resistance in epithelial ovarian cancer. Gynecol Oncol. 2013;131(3):764–71. doi: 10.1016/j.ygyno.2013.08.015.CrossRefPubMedGoogle Scholar
  17. 17.
    Ji ZY, Shi XF, Liu X, Shi Y, Zhou QQ, Liu XL, et al. The membrane-cytoskeletal protein 4.1N is involved in the process of cell adhesion, migration and invasion of breast cancer cells. Exp Ther Med. 2012;4(4):736–40. doi: 10.3892/Etm.2012.653.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ye K, Compton DA, Lai MM, Walensky LD, Snyder SH. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J Neurosci. 1999;19(24):10747–56.PubMedGoogle Scholar
  19. 19.
    Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7(1):509–23. doi: 10.18632/oncotarget.6312.PubMedGoogle Scholar
  20. 20.
    Han BG, Nunomura W, Takakuwa Y, Mohandas N, Jap BK. Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol. 2000;7(10):871–5. doi: 10.1038/82819. CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou Y, Du G, Hu X, Yu S, Liu Y, Xu Y, et al. Nectin-like molecule 1 is a protein 4.1N associated protein and recruits protein 4.1N from cytoplasm to the plasma membrane. Biochim Biophys Acta. 2005;1669(2):142–54. doi: 10.1016/j.bbamem.2005.01.013. CrossRefPubMedGoogle Scholar
  22. 22.
    Loscher W, Puskarjov M, Kaila K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology. 2013;69:62–74. doi: 10.1016/j.neuropharm.2012.05.045. CrossRefPubMedGoogle Scholar
  23. 23.
    Gimm JA, An X, Nunomura W, Mohandas N. Functional characterization of spectrin-actin-binding domains in 4.1 family of proteins. Biochemistry. 2002;41(23):7275–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma. 2010;244(1–4):99–131. doi: 10.1007/s00709-010-0181-1. CrossRefPubMedGoogle Scholar
  25. 25.
    Banning A, Kurrle N, Meister M, Tikkanen R. Flotillins in receptor tyrosine kinase signaling and cancer. Cells. 2014;3(1):129–49. doi: 10.3390/cells3010129. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rivera-Milla E, Stuermer CA, Malaga-Trillo E. Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci. 2006;63(3):343–57. doi: 10.1007/s00018-005-5434-3. CrossRefPubMedGoogle Scholar
  27. 27.
    Browman DT, Hoegg MB, Robbins SM. The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol. 2007;17(8):394–402. doi: 10.1016/j.tcb.2007.06.005. CrossRefPubMedGoogle Scholar
  28. 28.
    Stuermer CA. The reggie/flotillin connection to growth. Trends Cell Biol. 2010;20(1):6–13. doi: 10.1016/j.tcb.2009.10.003. CrossRefPubMedGoogle Scholar
  29. 29.
    Edgar AJ, Polak JM. Flotillin-1: gene structure: cDNA cloning from human lung and the identification of alternative polyadenylation signals. Int J Biochem Cell Biol. 2001;33(1):53–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol. 2006;8(1):46–54. doi: 10.1038/ncb1342. CrossRefPubMedGoogle Scholar
  31. 31.
    Li L, Luo J, Wang B, Wang D, Xie X, Yuan L et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer 2013;12:163. doi: 10.1186/1476-4598-12-163.
  32. 32.
    Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y, et al. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res. 2011;17(10):3089–99. doi: 10.1158/1078-0432.CCR-10-3068. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang SH, Wang CJ, Shi L, Li XH, Zhou J, Song LB, et al. High expression of FLOT1 is associated with progression and poor prognosis in hepatocellular carcinoma. PLoS One. 2013;8(6):e64709. doi: 10.1371/journal.pone.0064709. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Song L, Gong H, Lin C, Wang C, Liu L, Wu J, et al. Flotillin-1 promotes tumor necrosis factor-alpha receptor signaling and activation of NF-kappaB in esophageal squamous cell carcinoma cells. Gastroenterology. 2012;143(4):995–1005.e12. doi: 10.1053/j.gastro.2012.06.033.CrossRefPubMedGoogle Scholar
  35. 35.
    Li H, Wang RM, Liu SG, Zhang JP, Luo JY, Zhang BJ, et al. Abnormal expression of FLOT1 correlates with tumor progression and poor survival in patients with non-small cell lung cancer. Tumour Biol: J Int Soc Oncodevel Biol Med. 2014;35(4):3311–5. doi: 10.1007/s13277-013-1434-3. CrossRefGoogle Scholar
  36. 36.
    Zhang PF, Zeng GQ, Hu R, Li C, Yi H, Li MY, et al. Identification of flotillin-1 as a novel biomarker for lymph node metastasis and prognosis of lung adenocarcinoma by quantitative plasma membrane proteome analysis. J Proteome. 2012;77:202–14. doi: 10.1016/j.jprot.r2012.08.021.CrossRefGoogle Scholar
  37. 37.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene. 2009;28(21):2163–72. doi: 10.1038/onc.2009.82. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang QQ, Zhou DL, Lei Y, Zheng L, Chen SX, Gou HJ, et al. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/beta-catenin pathway. Oncotarget. 2015;6(5):3123–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Hu Z, Xie L. LHX6 inhibits breast cancer cell proliferation and invasion via repression of the Wnt/betacatenin signaling pathway. Mol Med Rep. 2015. doi: 10.3892/mmr.2015.3997. Google Scholar
  41. 41.
    You Z, Saims D, Chen S, Zhang Z, Guttridge DC, Guan KL, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol. 2002;157(3):429–40. doi: 10.1083/jcb.200201110. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kato N, Nakanishi M, Hirashima N. Flotillin-1 regulates IgE receptor-mediated signaling in rat basophilic leukemia (RBL-2H3) cells. J Immunol. 2006;177(1):147–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Kioka N, Ueda K, Amachi T. Vinexin, CAP/ponsin, ArgBP2: a novel adaptor protein family regulating cytoskeletal organization and signal transduction. Cell Struct Funct. 2002;27(1):1–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR. The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem. 2005;280(16):16125–34. doi: 10.1074/jbc.M500940200. CrossRefPubMedGoogle Scholar
  45. 45.
    Solis GP, Schrock Y, Hulsbusch N, Wiechers M, Plattner H, Stuermer CA. Reggies/flotillins regulate E-cadherin-mediated cell contact formation by affecting EGFR trafficking. Mol Biol Cell. 2012;23(10):1812–25. doi: 10.1091/mbc.E11-12-1006. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kajla S, Mondol AS, Nagasawa A, Zhang Y, Kato M, Matsuno K, et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. FASEB J: Off Publ Fed Am Soc Exp Biol. 2012;26(5):2049–59. doi: 10.1096/fj.11-196360. CrossRefGoogle Scholar
  47. 47.
    Yokoyama N, Malbon CC. Dishevelled-2 docks and activates Src in a Wnt-dependent manner. J Cell Sci. 2009;122(Pt 24):4439–51. doi: 10.1242/jcs.051847. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang H, Liu C, Debnath G, Baines AJ, Conboy JG, Mohandas N, et al. Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol. 2010;134(4):411–20. doi: 10.1007/s00418-010-0749-z. CrossRefPubMedGoogle Scholar
  49. 49.
    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.CrossRefPubMedGoogle Scholar
  50. 50.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. doi: 10.1038/nature03319. CrossRefPubMedGoogle Scholar
  51. 51.
    Harland R, Gerhart J. Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol. 1997;13:611–67. doi: 10.1146/annurev.cellbio.13.1.611. CrossRefPubMedGoogle Scholar
  52. 52.
    Robb VA, Gerber MA, Hart-Mahon EK, Gutmann DH. Membrane localization of the U2 domain of protein 4.1B is necessary and sufficient for meningioma growth suppression. Oncogene. 2005;24(11):1946–57. doi: 10.1038/sj.onc.1208335. CrossRefPubMedGoogle Scholar
  53. 53.
    Thorn CC, Freeman TC, Scott N, Guillou PJ, Jayne DG. Laser microdissection expression profiling of marginal edges of colorectal tumours reveals evidence of increased lactate metabolism in the aggressive phenotype. Gut. 2009;58(3):404–12. doi: 10.1136/gut.2008.157255. CrossRefPubMedGoogle Scholar
  54. 54.
    Vlaeminck-Guillem V, Gillet G, Rimokh R. SRC: marker or actor in prostate cancer aggressiveness. Front Oncol. 2014;4:222. doi: 10.3389/fonc.2014.00222.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de Herreros A, et al. p120 catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol Cell Biol. 2003;23(7):2287–97.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem. 1999;274(51):36734–40.CrossRefPubMedGoogle Scholar
  57. 57.
    Le TL, Yap AS, Stow JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol. 1999;146(1):219–32.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A. Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol. 2005;25(12):5031–9. doi: 10.1128/MCB.25.12.5031-5039.2005. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Qin Yang
    • 1
  • Min Zhu
    • 1
  • Zi Wang
    • 1
  • Hui Li
    • 1
  • Weihua Zhou
    • 1
  • Xiaojuan Xiao
    • 1
  • Bin Zhang
    • 2
  • Weixin Hu
    • 1
  • Jing Liu
    • 1
  1. 1.State Key Laboratory of Medical Genetics & School of Life SciencesCentral South UniversityChangshaChina
  2. 2.Department of pathologyCentral South UniversityChangshaChina

Personalised recommendations